Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 May;178(10):2941–2947. doi: 10.1128/jb.178.10.2941-2947.1996

maoB, a gene that encodes a positive regulator of the monoamine oxidase gene (maoA) in Escherichia coli.

M Yamashita 1, H Azakami 1, N Yokoro 1, J H Roh 1, H Suzuki 1, H Kumagai 1, Y Murooka 1
PMCID: PMC178032  PMID: 8631685

Abstract

The structural gene for copper- and topa quinone-containing monoamine oxidase (maoA) and an unknown amine oxidase gene have been located at 30.9 min on the Escherichia coli chromosome. Deletion analysis showed that the unknown gene was located within a 1.1-kb cloned fragment adjacent to the maoA gene. The nucleotide sequence of this fragment was determined, and a single open reading frame (maoB) consisting of 903 bp was found. The gene encoded a polypeptide with a predicted molecular mass of 34,619 Da which was correlated with the migration on a sodium dodecyl sulfate-polyacrylamide gel. The predicted amino acid sequence of the MaoB protein was identical to the NH2-terminal amino acid sequence derived by Edman degradation of the protein synthesized under the self-promoter. No homology of the nucleotide sequence of maoB to the sequences of any reported genes was found. However, the amino acid sequence of MaoB showed a high level of homology with respect to the helix-turn-helix motif of the AraC family in its C terminus. The homology search and disruption of maoA on the chromosome led to the conclusion that MaoB is a transcriptional activator of maoA but not an amine oxidase. The consensus sequence of the cyclic AMP-cyclic AMP receptor protein complex binding domain was adjacent to the putative promoter for the maoB gene. By use of lac gene fusions with the maoA and maoB genes, we showed that the maoA gene is regulated by tyramine and MaoB and that the expression of the maoB gene is subject to catabolite repression. Thus, it seems likely that tyramine and the MaoB protein activate the transcription of maoA by binding to the regulatory region of the maoA gene.

Full Text

The Full Text of this article is available as a PDF (787.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Azakami H., Sugino H., Iwata N., Yokoro N., Yamashita M., Murooka Y. A Klebsiella aerogenes moaEF operon is controlled by the positive MoaR regulator of the monoamine regulon. Gene. 1995 Oct 16;164(1):89–94. doi: 10.1016/0378-1119(95)00400-z. [DOI] [PubMed] [Google Scholar]
  2. Azakami H., Sugino H., Yokoro N., Iwata N., Murooka Y. moaR, a gene that encodes a positive regulator of the monoamine regulon in Klebsiella aerogenes. J Bacteriol. 1993 Oct;175(19):6287–6292. doi: 10.1128/jb.175.19.6287-6292.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BLASCHKO H., FRIEDMAN P. J., HAWES R., NILSSON K. The amine oxidases of mammalian plasma. J Physiol. 1959 Mar 3;145(2):384–404. doi: 10.1113/jphysiol.1959.sp006149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brunelle A., Schleif R. Determining residue-base interactions between AraC protein and araI DNA. J Mol Biol. 1989 Oct 20;209(4):607–622. doi: 10.1016/0022-2836(89)90598-6. [DOI] [PubMed] [Google Scholar]
  5. Bustos S. A., Schleif R. F. Functional domains of the AraC protein. Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5638–5642. doi: 10.1073/pnas.90.12.5638. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cass L. G., Wilcox G. Mutations in the araC regulatory gene of Escherichia coli B/r that affect repressor and activator functions of AraC protein. J Bacteriol. 1986 Jun;166(3):892–900. doi: 10.1128/jb.166.3.892-900.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cooper R. A., Knowles P. F., Brown D. E., McGuirl M. A., Dooley D. M. Evidence for copper and 3,4,6-trihydroxyphenylalanine quinone cofactors in an amine oxidase from the gram-negative bacterium Escherichia coli K-12. Biochem J. 1992 Dec 1;288(Pt 2):337–340. doi: 10.1042/bj2880337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Erwin V. G., Hellerman L. Mitochondrial monoamine oxidase. I. Purification and characterization of the bovine kidney enzyme. J Biol Chem. 1967 Sep 25;242(18):4230–4238. [PubMed] [Google Scholar]
  9. Eustance R. J., Bustos S. A., Schleif R. F. Reaching out. Locating and lengthening the interdomain linker in AraC protein. J Mol Biol. 1994 Sep 30;242(4):330–338. doi: 10.1006/jmbi.1994.1584. [DOI] [PubMed] [Google Scholar]
  10. Gallegos M. T., Michán C., Ramos J. L. The XylS/AraC family of regulators. Nucleic Acids Res. 1993 Feb 25;21(4):807–810. doi: 10.1093/nar/21.4.807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Harley C. B., Reynolds R. P. Analysis of E. coli promoter sequences. Nucleic Acids Res. 1987 Mar 11;15(5):2343–2361. doi: 10.1093/nar/15.5.2343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Igaue I., Gomes B., Yasunobu K. T. Beef mitochondrial monoamine oxidase, a flavin dinucleotide enzyme. Biochem Biophys Res Commun. 1967 Nov 30;29(4):562–570. doi: 10.1016/0006-291x(67)90522-0. [DOI] [PubMed] [Google Scholar]
  13. Jordi B. J., Dagberg B., de Haan L. A., Hamers A. M., van der Zeijst B. A., Gaastra W., Uhlin B. E. The positive regulator CfaD overcomes the repression mediated by histone-like protein H-NS (H1) in the CFA/I fimbrial operon of Escherichia coli. EMBO J. 1992 Jul;11(7):2627–2632. doi: 10.1002/j.1460-2075.1992.tb05328.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kawamukai M., Kishimoto J., Utsumi R., Himeno M., Komano T., Aiba H. Negative regulation of adenylate cyclase gene (cya) expression by cyclic AMP-cyclic AMP receptor protein in Escherichia coli: studies with cya-lac protein and operon fusion plasmids. J Bacteriol. 1985 Nov;164(2):872–877. doi: 10.1128/jb.164.2.872-877.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kohara Y., Akiyama K., Isono K. The physical map of the whole E. coli chromosome: application of a new strategy for rapid analysis and sorting of a large genomic library. Cell. 1987 Jul 31;50(3):495–508. doi: 10.1016/0092-8674(87)90503-4. [DOI] [PubMed] [Google Scholar]
  16. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  17. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  18. Matin A., Auger E. A., Blum P. H., Schultz J. E. Genetic basis of starvation survival in nondifferentiating bacteria. Annu Rev Microbiol. 1989;43:293–316. doi: 10.1146/annurev.mi.43.100189.001453. [DOI] [PubMed] [Google Scholar]
  19. Matsudaira P. Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J Biol Chem. 1987 Jul 25;262(21):10035–10038. [PubMed] [Google Scholar]
  20. McEwen C. M., Jr Human plasma monoamine oxidase. 1. Purification and identification. J Biol Chem. 1965 May;240(5):2003–2010. [PubMed] [Google Scholar]
  21. McGowan R. E., Muir R. M. Purification and Properties of Amine Oxidase from Epicotyls of Pisum sativum. Plant Physiol. 1971 May;47(5):644–648. doi: 10.1104/pp.47.5.644. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Michan C., Zhou L., Gallegos M. T., Timmis K. N., Ramos J. L. Identification of critical amino-terminal regions of XylS. The positive regulator encoded by the TOL plasmid. J Biol Chem. 1992 Nov 15;267(32):22897–22901. [PubMed] [Google Scholar]
  23. Morita T., Shigesada K., Kimizuka F., Aiba H. Regulatory effect of a synthetic CRP recognition sequence placed downstream of a promoter. Nucleic Acids Res. 1988 Aug 11;16(15):7315–7332. doi: 10.1093/nar/16.15.7315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Murooka Y., Adachi T., Okamura H., Harada T. Genetic control of arylsulfatase synthesis in Klebsiella aerogenes. J Bacteriol. 1977 Apr;130(1):74–81. doi: 10.1128/jb.130.1.74-81.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Murooka Y., Doi N., Harada T. Distribution of membrane-bound monoamine oxidase in bacteria. Appl Environ Microbiol. 1979 Oct;38(4):565–569. doi: 10.1128/aem.38.4.565-569.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Murooka Y., Higashiura T., Harada T. Genetic mapping of tyramine oxidase and arylsulfatase genes and their regulation in intergeneric hybrids of enteric bacteria. J Bacteriol. 1978 Nov;136(2):714–722. doi: 10.1128/jb.136.2.714-722.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Murooka Y., Ishibashi K., Yasumoto M., Sasaki M., Sugino H., Azakami H., Yamashita M. A sulfur- and tyramine-regulated Klebsiella aerogenes operon containing the arylsulfatase (atsA) gene and the atsB gene. J Bacteriol. 1990 Apr;172(4):2131–2140. doi: 10.1128/jb.172.4.2131-2140.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Murooka Y., Yamada T., Tanabe S., Harada T. Immunological study of the regulation of cellular arylsulfatase synthesis in Klebsiella aerogenes. J Bacteriol. 1977 Oct;132(1):247–253. doi: 10.1128/jb.132.1.247-253.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Nara S., Gomes B., Yasunobu K. T. Amine oxidase. VII. Beef liver mitochondrial monoamine oxidase, a copper-containing protein. J Biol Chem. 1966 Jun 25;241(12):2774–2780. [PubMed] [Google Scholar]
  30. Nunoshiba T., Hidalgo E., Amábile Cuevas C. F., Demple B. Two-stage control of an oxidative stress regulon: the Escherichia coli SoxR protein triggers redox-inducible expression of the soxS regulatory gene. J Bacteriol. 1992 Oct;174(19):6054–6060. doi: 10.1128/jb.174.19.6054-6060.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Oka M., Murooka Y., Harada T. Genetic control of tyramine oxidase, which is involved in derepressed synthesis of arylsulfatase in Klebsiella aerogenes. J Bacteriol. 1980 Jul;143(1):321–327. doi: 10.1128/jb.143.1.321-327.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Okamura H., Murooka Y., Harada T. Regulation of tyramine oxidase synthesis in Klebsiella aerogenes. J Bacteriol. 1976 Jul;127(1):24–31. doi: 10.1128/jb.127.1.24-31.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Okamura H., Murooka Y., Harada T. Tyramine oxidase and regulation of arylsulfatase synthesis in Klebsiella aerogenes. J Bacteriol. 1977 Jan;129(1):59–65. doi: 10.1128/jb.129.1.59-65.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Ramos J. L., Michan C., Rojo F., Dwyer D., Timmis K. Signal-regulator interactions. Genetic analysis of the effector binding site of xylS, the benzoate-activated positive regulator of Pseudomonas TOL plasmid meta-cleavage pathway operon. J Mol Biol. 1990 Jan 20;211(2):373–382. doi: 10.1016/0022-2836(90)90358-S. [DOI] [PubMed] [Google Scholar]
  35. Ramos J. L., Rojo F., Zhou L., Timmis K. N. A family of positive regulators related to the Pseudomonas putida TOL plasmid XylS and the Escherichia coli AraC activators. Nucleic Acids Res. 1990 Apr 25;18(8):2149–2152. doi: 10.1093/nar/18.8.2149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Ravnikar P. D., Somerville R. L. Localization of the structural gene for threonine dehydrogenase in Escherichia coli. J Bacteriol. 1986 Oct;168(1):434–436. doi: 10.1128/jb.168.1.434-436.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Roh J. H., Suzuki H., Azakami H., Yamashita M., Murooka Y., Kumagai H. Purification, characterization, and crystallization of monoamine oxidase from Escherichia coli K-12. Biosci Biotechnol Biochem. 1994 Sep;58(9):1652–1656. doi: 10.1271/bbb.58.1652. [DOI] [PubMed] [Google Scholar]
  38. Roh J. H., Suzuki H., Kumagai H., Yamashita M., Azakami H., Murooka Y., Mikami B. Crystallization and preliminary X-ray analysis of copper amine oxidase from Escherichia coli K-12. J Mol Biol. 1994 May 13;238(4):635–637. doi: 10.1006/jmbi.1994.1321. [DOI] [PubMed] [Google Scholar]
  39. Rosenberg M., Court D. Regulatory sequences involved in the promotion and termination of RNA transcription. Annu Rev Genet. 1979;13:319–353. doi: 10.1146/annurev.ge.13.120179.001535. [DOI] [PubMed] [Google Scholar]
  40. Salach J. I. Monoamine oxidase from beef liver mitochondria: simplified isolation procedure, properties, and determination of its cysteinyl flavin content. Arch Biochem Biophys. 1979 Jan;192(1):128–137. doi: 10.1016/0003-9861(79)90078-x. [DOI] [PubMed] [Google Scholar]
  41. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Schultz J. E., Latter G. I., Matin A. Differential regulation by cyclic AMP of starvation protein synthesis in Escherichia coli. J Bacteriol. 1988 Sep;170(9):3903–3909. doi: 10.1128/jb.170.9.3903-3909.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Shine J., Dalgarno L. The 3'-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1342–1346. doi: 10.1073/pnas.71.4.1342. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Sugino H., Ishibashi K., Sakaue M., Yamashita M., Murooka Y. Gene cloning of the maoA gene and overproduction of a soluble monoamine oxidase from Klebsiella aerogenes. Appl Microbiol Biotechnol. 1991 Aug;35(5):606–610. doi: 10.1007/BF00169624. [DOI] [PubMed] [Google Scholar]
  45. Sugino H., Sasaki M., Azakami H., Yamashita M., Murooka Y. A monoamine-regulated Klebsiella aerogenes operon containing the monoamine oxidase structural gene (maoA) and the maoC gene. J Bacteriol. 1992 Apr;174(8):2485–2492. doi: 10.1128/jb.174.8.2485-2492.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. TABOR C. W., TABOR H., ROSENTHAL S. M. Purification of amine oxidase from beef plasma. J Biol Chem. 1954 Jun;208(2):645–661. [PubMed] [Google Scholar]
  47. Weichart D., Lange R., Henneberg N., Hengge-Aronis R. Identification and characterization of stationary phase-inducible genes in Escherichia coli. Mol Microbiol. 1993 Oct;10(2):407–420. [PubMed] [Google Scholar]
  48. YAMADA H., YASUNOBU K. T. Monoamine oxidase. I. Purification, crystallization, and properties of plasma monoamine oxidase. J Biol Chem. 1962 May;237:1511–1516. [PubMed] [Google Scholar]
  49. Yamaguchi K., Masamune Y. Autogenous regulation of synthesis of the replication protein in plasmid pSC101. Mol Gen Genet. 1985;200(3):362–367. doi: 10.1007/BF00425718. [DOI] [PubMed] [Google Scholar]
  50. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]
  51. Youdim M. B., Sourkes T. L. Properties of purified, soluble monoamine oxidase. Can J Biochem. 1966 Oct;44(10):1397–1400. doi: 10.1139/o66-158. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES