Abstract
F plasmids use surface exclusion to prevent the redundant entry of additional F plasmids during active growth of the host cells. This mechanism is relaxed during stationary phase and nonlethal selections, allowing homosexual redundant plasmid transfer. Homosexual redundant transfer occurs in stationary-phase liquid cultures, within nongrowing populations on solid media, and on media lacking a carbon source. We examined the relationship between homosexual redundant transfer, which occurs between F+ hosts, and reversion of a plasmid-encoded lac mutant allele, lacI33omegalacZ. Sodium dodecyl sulfate (SDS) and mutations that prevent normal transfer to F- cells reduced redundant transfer and selection-induced reversion of the lacI33omegalacZ allele. A recA null mutation reduced redundant transfer and selection-induced reversion of the lacI33omegalacZ mutation. Conversely, a recD null mutation increased redundant transfer and selection-induced reversion of the lacI33omegalacZ allele. These results suggest an explanation for why SDS and these mutations affect reversion of the plasmid lacI33omegalacZ allele. However, a direct causal relationship between transfer and reversion remains to be established. These results suggest that Rec proteins play an active role in redundant transfer and/or that redundant transfer is regulated with the activation of recombination. Redundant homosexual plasmid transfer during a period of stress may represent a genetic response that facilitates evolution of plasmid-encoded functions through mutation, recombination, reassortment, and dissemination of genetic elements present in the populations.
Full Text
The Full Text of this article is available as a PDF (297.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Achtman M., Manning P. A., Kusecek B., Schwuchow S., Willetts N. A genetic analysis of F sex factor cistrons needed for surface exclusion in Escherichia coli. J Mol Biol. 1980 Apr 25;138(4):779–795. doi: 10.1016/0022-2836(80)90065-0. [DOI] [PubMed] [Google Scholar]
- Achtman M., Morelli G., Schwuchow S. Cell-cell interactions in conjugating Escherichia coli: role of F pili and fate of mating aggregates. J Bacteriol. 1978 Sep;135(3):1053–1061. doi: 10.1128/jb.135.3.1053-1061.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Achtman M., Willetts N., Clark A. J. Conjugational complementation analysis of transfer-deficient mutants of Flac in Escherichia coli. J Bacteriol. 1972 Jun;110(3):831–842. doi: 10.1128/jb.110.3.831-842.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Benson S. A., DeCloux A. M., Munro J. Mutant bias in nonlethal selections results from selective recovery of mutants. Genetics. 1991 Nov;129(3):647–658. doi: 10.1093/genetics/129.3.647. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Biek D. P., Cohen S. N. Identification and characterization of recD, a gene affecting plasmid maintenance and recombination in Escherichia coli. J Bacteriol. 1986 Aug;167(2):594–603. doi: 10.1128/jb.167.2.594-603.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cairns J., Foster P. L. Adaptive reversion of a frameshift mutation in Escherichia coli. Genetics. 1991 Aug;128(4):695–701. doi: 10.1093/genetics/128.4.695. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Foster P. L., Cairns J. Mechanisms of directed mutation. Genetics. 1992 Aug;131(4):783–789. doi: 10.1093/genetics/131.4.783. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Foster P. L., Trimarchi J. M. Adaptive reversion of an episomal frameshift mutation in Escherichia coli requires conjugal functions but not actual conjugation. Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5487–5490. doi: 10.1073/pnas.92.12.5487. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Foster P. L., Trimarchi J. M. Conjugation is not required for adaptive reversion of an episomal frameshift mutation in Escherichia coli. J Bacteriol. 1995 Nov;177(22):6670–6671. doi: 10.1128/jb.177.22.6670-6671.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frost L. S., Ippen-Ihler K., Skurray R. A. Analysis of the sequence and gene products of the transfer region of the F sex factor. Microbiol Rev. 1994 Jun;58(2):162–210. doi: 10.1128/mr.58.2.162-210.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Galitski T., Roth J. R. Evidence that F plasmid transfer replication underlies apparent adaptive mutation. Science. 1995 Apr 21;268(5209):421–423. doi: 10.1126/science.7716546. [DOI] [PubMed] [Google Scholar]
- Hall B. G. Adaptive evolution that requires multiple spontaneous mutations. I. Mutations involving an insertion sequence. Genetics. 1988 Dec;120(4):887–897. doi: 10.1093/genetics/120.4.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harris R. S., Longerich S., Rosenberg S. M. Recombination in adaptive mutation. Science. 1994 Apr 8;264(5156):258–260. doi: 10.1126/science.8146657. [DOI] [PubMed] [Google Scholar]
- Ippen-Ihler K. A., Minkley E. G., Jr The conjugation system of F, the fertility factor of Escherichia coli. Annu Rev Genet. 1986;20:593–624. doi: 10.1146/annurev.ge.20.120186.003113. [DOI] [PubMed] [Google Scholar]
- Kunz B. A., Glickman B. W. The infidelity of conjugal DNA transfer in Escherichia coli. Genetics. 1983 Nov;105(3):489–500. doi: 10.1093/genetics/105.3.489. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lederberg J, Cavalli L L, Lederberg E M. Sex Compatibility in Escherichia Coli. Genetics. 1952 Nov;37(6):720–730. doi: 10.1093/genetics/37.6.720. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maneewannakul K., Maneewannakul S., Ippen-Ihler K. Sequence alterations affecting F plasmid transfer gene expression: a conjugation system dependent on transcription by the RNA polymerase of phage T7. Mol Microbiol. 1992 Oct;6(20):2961–2973. doi: 10.1111/j.1365-2958.1992.tb01755.x. [DOI] [PubMed] [Google Scholar]
- Michod R. E., Wojciechowski M. F., Hoelzer M. A. DNA repair and the evolution of transformation in the bacterium Bacillus subtilis. Genetics. 1988 Jan;118(1):31–39. doi: 10.1093/genetics/118.1.31. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Misra R., Benson S. A. A novel mutation, cog, which results in production of a new porin protein (OmpG) of Escherichia coli K-12. J Bacteriol. 1989 Aug;171(8):4105–4111. doi: 10.1128/jb.171.8.4105-4111.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Misra R., Benson S. A. Genetic identification of the pore domain of the OmpC porin of Escherichia coli K-12. J Bacteriol. 1988 Aug;170(8):3611–3617. doi: 10.1128/jb.170.8.3611-3617.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mongold J. A. DNA repair and the evolution of transformation in Haemophilus influenzae. Genetics. 1992 Dec;132(4):893–898. doi: 10.1093/genetics/132.4.893. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peters J. E., Benson S. A. Redundant transfer of F' plasmids occurs between Escherichia coli cells during nonlethal selections. J Bacteriol. 1995 Feb;177(3):847–850. doi: 10.1128/jb.177.3.847-850.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prival M. J., Cebula T. A. Sequence analysis of mutations arising during prolonged starvation of Salmonella typhimurium. Genetics. 1992 Oct;132(2):303–310. doi: 10.1093/genetics/132.2.303. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Radicella J. P., Park P. U., Fox M. S. Adaptive mutation in Escherichia coli: a role for conjugation. Science. 1995 Apr 21;268(5209):418–420. doi: 10.1126/science.7716545. [DOI] [PubMed] [Google Scholar]
- Rosenberg S. M., Harris R. S., Torkelson J. Molecular handles on adaptive mutation. Mol Microbiol. 1995 Oct;18(2):185–189. doi: 10.1111/j.1365-2958.1995.mmi_18020185.x. [DOI] [PubMed] [Google Scholar]
- Sampson B. A., Misra R., Benson S. A. Identification and characterization of a new gene of Escherichia coli K-12 involved in outer membrane permeability. Genetics. 1989 Jul;122(3):491–501. doi: 10.1093/genetics/122.3.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wandersman C., Schwartz M., Ferenci T. Escherichia coli mutants impaired in maltodextrin transport. J Bacteriol. 1979 Oct;140(1):1–13. doi: 10.1128/jb.140.1.1-13.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Willetts N., Wilkins B. Processing of plasmid DNA during bacterial conjugation. Microbiol Rev. 1984 Mar;48(1):24–41. doi: 10.1128/mr.48.1.24-41.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]