Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Jun;178(11):3044–3048. doi: 10.1128/jb.178.11.3044-3048.1996

Dihydrolipoamide dehydrogenase from the halophilic archaeon Haloferax volcanii: homologous overexpression of the cloned gene.

K A Jolley 1, E Rapaport 1, D W Hough 1, M J Danson 1, W G Woods 1, M L Dyall-Smith 1
PMCID: PMC178050  PMID: 8655478

Abstract

The gene encoding dihydrolipoamide dehydrogenase from the halophilic archaeon, Haloferax volcanii, has been subcloned and overexpressed in the parent organism by using the halophilic archaeal rRNA promoter. The recombinant protein has been purified to homogeneity and characterized with respect to its kinetic, molecular, and salt-dependent properties. A dihydrolipoamide dehydrogenase-minus mutant of H. volcanii has been created by homologous recombination with the subcloned gene after insertion of the mevinolin resistance determinant into the protein-coding region. To explore the physiological function of the dihydrolipoamide dehydrogenase, the growth properties of the mutant halophile have been examined.

Full Text

The Full Text of this article is available as a PDF (268.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blecher O., Goldman S., Mevarech M. High expression in Escherichia coli of the gene coding for dihydrofolate reductase of the extremely halophilic archaebacterium Haloferax volcanii. Reconstitution of the active enzyme and mutation studies. Eur J Biochem. 1993 Aug 15;216(1):199–203. doi: 10.1111/j.1432-1033.1993.tb18133.x. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  3. Brown J. W., Daniels C. J., Reeve J. N. Gene structure, organization, and expression in archaebacteria. Crit Rev Microbiol. 1989;16(4):287–338. doi: 10.3109/10408418909105479. [DOI] [PubMed] [Google Scholar]
  4. Cendrin F., Chroboczek J., Zaccai G., Eisenberg H., Mevarech M. Cloning, sequencing, and expression in Escherichia coli of the gene coding for malate dehydrogenase of the extremely halophilic archaebacterium Haloarcula marismortui. Biochemistry. 1993 Apr 27;32(16):4308–4313. doi: 10.1021/bi00067a020. [DOI] [PubMed] [Google Scholar]
  5. Charlebois R. L., Lam W. L., Cline S. W., Doolittle W. F. Characterization of pHV2 from Halobacterium volcanii and its use in demonstrating transformation of an archaebacterium. Proc Natl Acad Sci U S A. 1987 Dec;84(23):8530–8534. doi: 10.1073/pnas.84.23.8530. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cline S. W., Lam W. L., Charlebois R. L., Schalkwyk L. C., Doolittle W. F. Transformation methods for halophilic archaebacteria. Can J Microbiol. 1989 Jan;35(1):148–152. doi: 10.1139/m89-022. [DOI] [PubMed] [Google Scholar]
  7. Danson M. J., Conroy K., McQuattie A., Stevenson K. J. Dihydrolipoamide dehydrogenase from Trypanosoma brucei. Characterization and cellular location. Biochem J. 1987 May 1;243(3):661–665. doi: 10.1042/bj2430661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Danson M. J. Dihydrolipoamide dehydrogenase: a 'new' function for an old enzyme? Biochem Soc Trans. 1988 Apr;16(2):87–89. doi: 10.1042/bst0160087. [DOI] [PubMed] [Google Scholar]
  9. Danson M. J., Eisenthal R., Hall S., Kessell S. R., Williams D. L. Dihydrolipoamide dehydrogenase from halophilic archaebacteria. Biochem J. 1984 Mar 15;218(3):811–818. doi: 10.1042/bj2180811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Holmes M. L., Dyall-Smith M. L. A plasmid vector with a selectable marker for halophilic archaebacteria. J Bacteriol. 1990 Feb;172(2):756–761. doi: 10.1128/jb.172.2.756-761.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Holmes M. L., Nuttall S. D., Dyall-Smith M. L. Construction and use of halobacterial shuttle vectors and further studies on Haloferax DNA gyrase. J Bacteriol. 1991 Jun;173(12):3807–3813. doi: 10.1128/jb.173.12.3807-3813.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Holmes M., Pfeifer F., Dyall-Smith M. Improved shuttle vectors for Haloferax volcanii including a dual-resistance plasmid. Gene. 1994 Aug 19;146(1):117–121. doi: 10.1016/0378-1119(94)90844-3. [DOI] [PubMed] [Google Scholar]
  13. Kikuchi G., Hiraga K. The mitochondrial glycine cleavage system. Unique features of the glycine decarboxylation. Mol Cell Biochem. 1982 Jun 25;45(3):137–149. doi: 10.1007/BF00230082. [DOI] [PubMed] [Google Scholar]
  14. Klebe R. J., Harriss J. V., Sharp Z. D., Douglas M. G. A general method for polyethylene-glycol-induced genetic transformation of bacteria and yeast. Gene. 1983 Nov;25(2-3):333–341. doi: 10.1016/0378-1119(83)90238-x. [DOI] [PubMed] [Google Scholar]
  15. Lam W. L., Doolittle W. F. Shuttle vectors for the archaebacterium Halobacterium volcanii. Proc Natl Acad Sci U S A. 1989 Jul;86(14):5478–5482. doi: 10.1073/pnas.86.14.5478. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Perham R. N. Domains, motifs, and linkers in 2-oxo acid dehydrogenase multienzyme complexes: a paradigm in the design of a multifunctional protein. Biochemistry. 1991 Sep 3;30(35):8501–8512. doi: 10.1021/bi00099a001. [DOI] [PubMed] [Google Scholar]
  17. Plaga W., Lottspeich F., Oesterhelt D. Improved purification, crystallization and primary structure of pyruvate:ferredoxin oxidoreductase from Halobacterium halobium. Eur J Biochem. 1992 Apr 1;205(1):391–397. doi: 10.1111/j.1432-1033.1992.tb16792.x. [DOI] [PubMed] [Google Scholar]
  18. REED L. J., KOIKE M., LEVITCH M. E., LEACH F. R. Studies on the nature and reactions of protein-bound lipoic acid. J Biol Chem. 1958 May;232(1):143–158. [PubMed] [Google Scholar]
  19. Richarme G., Heine H. G. Galactose- and maltose-stimulated lipoamide dehydrogenase activities related to the binding-protein-dependent transport of galactose and maltose in toluenized cells of Escherichia coli. Eur J Biochem. 1986 Apr 15;156(2):399–405. doi: 10.1111/j.1432-1033.1986.tb09596.x. [DOI] [PubMed] [Google Scholar]
  20. Richarme G. Purification of a new dihydrolipoamide dehydrogenase from Escherichia coli. J Bacteriol. 1989 Dec;171(12):6580–6585. doi: 10.1128/jb.171.12.6580-6585.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Suzuki Y. J., Tsuchiya M., Packer L. Determination of structure-antioxidant activity relationships of dihydrolipoic acid. Methods Enzymol. 1994;234:454–461. doi: 10.1016/0076-6879(94)34116-8. [DOI] [PubMed] [Google Scholar]
  22. Vettakkorumakankav N. N., Stevenson K. J. Dihydrolipoamide dehydrogenase from Haloferax volcanii: gene cloning, complete primary structure, and comparison to other dihydrolipoamide dehydrogenases. Biochem Cell Biol. 1992 Aug;70(8):656–663. doi: 10.1139/o92-101. [DOI] [PubMed] [Google Scholar]
  23. Vettakkorumakankav N., Danson M. J., Hough D. W., Stevenson K. J., Davison M., Young J. Dihydrolipoamide dehydrogenase from the halophilic archaebacterium Haloferax volcanii: characterization and N-terminal sequence. Biochem Cell Biol. 1992 Jan;70(1):70–75. doi: 10.1139/o92-010. [DOI] [PubMed] [Google Scholar]
  24. Vieira J., Messing J. New pUC-derived cloning vectors with different selectable markers and DNA replication origins. Gene. 1991 Apr;100:189–194. doi: 10.1016/0378-1119(91)90365-i. [DOI] [PubMed] [Google Scholar]
  25. Zimmer G., Mainka L., Krüger E. Dihydrolipoic acid activates oligomycin-sensitive thiol groups and increases ATP synthesis in mitochondria. Arch Biochem Biophys. 1991 Aug 1;288(2):609–613. doi: 10.1016/0003-9861(91)90243-c. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES