Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Jun;178(11):3106–3112. doi: 10.1128/jb.178.11.3106-3112.1996

Modeling and measuring the elastic properties of an archaeal surface, the sheath of Methanospirillum hungatei, and the implication of methane production.

W Xu 1, P J Mulhern 1, B L Blackford 1, M H Jericho 1, M Firtel 1, T J Beveridge 1
PMCID: PMC178059  PMID: 8655487

Abstract

We describe a technique for probing the elastic properties of biological membranes by using an atomic force microscope (AFM) tip to press the biological material into a groove in a solid surface. A simple model is developed to relate the applied force and observed depression distance to the elastic modulus of the material. A measurement on the proteinaceous sheath of the archaebacterium Methanospirillum hungatei GP1 gave a Young's modulus of 2 x 10(10) to 4 x 10(10) N/m2. The measurements suggested that the maximum sustainable tension in the sheath was 3.5 to 5 N/m. This finding implied a maximum possible internal pressure for the bacterium of between 300 and 400 atm. Since the cell membrane and S-layer (wall) which surround each cell should be freely permeable to methane and since we demonstrate that the sheath undergoes creep (expansion) with pressure increase, it is possible that the sheath acts as a pressure regulator by stretching, allowing the gas to escape only after a certain pressure is reached. This creep would increase the permeability of the sheath to diffusible substances.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beveridge T. J., Graham L. L. Surface layers of bacteria. Microbiol Rev. 1991 Dec;55(4):684–705. doi: 10.1128/mr.55.4.684-705.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beveridge T. J., Southam G., Jericho M. H., Blackford B. L. High-resolution topography of the S-layer sheath of the archaebacterium Methanospirillum hungatei provided by scanning tunneling microscopy. J Bacteriol. 1990 Nov;172(11):6589–6595. doi: 10.1128/jb.172.11.6589-6595.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beveridge T. J., Sprott G. D., Whippey P. Ultrastructure, inferred porosity, and gram-staining character of Methanospirillum hungatei filament termini describe a unique cell permeability for this archaeobacterium. J Bacteriol. 1991 Jan;173(1):130–140. doi: 10.1128/jb.173.1.130-140.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Beveridge T. J., Stewart M., Doyle R. J., Sprott G. D. Unusual stability of the Methanospirillum hungatei sheath. J Bacteriol. 1985 May;162(2):728–737. doi: 10.1128/jb.162.2.728-737.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Beveridge T. J. The bacterial surface: general considerations towards design and function. Can J Microbiol. 1988 Apr;34(4):363–372. doi: 10.1139/m88-067. [DOI] [PubMed] [Google Scholar]
  6. Beveridge T. J. Ultrastructure, chemistry, and function of the bacterial wall. Int Rev Cytol. 1981;72:229–317. doi: 10.1016/s0074-7696(08)61198-5. [DOI] [PubMed] [Google Scholar]
  7. Firtel M., Beveridge T. J. Scanning probe microscopy in microbiology. Micron. 1995;26(4):347–362. doi: 10.1016/0968-4328(95)00012-7. [DOI] [PubMed] [Google Scholar]
  8. Firtel M., Southam G., Harauz G., Beveridge T. J. Characterization of the cell wall of the sheathed methanogen Methanospirillum hungatei GP1 as an S layer. J Bacteriol. 1993 Dec;175(23):7550–7560. doi: 10.1128/jb.175.23.7550-7560.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Koch A. L., Pinette M. F. Nephelometric determination of turgor pressure in growing gram-negative bacteria. J Bacteriol. 1987 Aug;169(8):3654–3663. doi: 10.1128/jb.169.8.3654-3663.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Koch A. L. The surface stress theory of microbial morphogenesis. Adv Microb Physiol. 1983;24:301–366. doi: 10.1016/s0065-2911(08)60388-4. [DOI] [PubMed] [Google Scholar]
  11. Radmacher M., Tillamnn R. W., Fritz M., Gaub H. E. From molecules to cells: imaging soft samples with the atomic force microscope. Science. 1992 Sep 25;257(5078):1900–1905. doi: 10.1126/science.1411505. [DOI] [PubMed] [Google Scholar]
  12. Southam G., Beveridge T. J. Characterization of novel, phenol-soluble polypeptides which confer rigidity to the sheath of Methanospirillum hungatei GP1. J Bacteriol. 1992 Feb;174(3):935–946. doi: 10.1128/jb.174.3.935-946.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Southam G., Beveridge T. J. Dissolution and immunochemical analysis of the sheath of the archaeobacterium Methanospirillum hungatei GP1. J Bacteriol. 1991 Oct;173(19):6213–6222. doi: 10.1128/jb.173.19.6213-6222.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Southam G., Firtel M., Blackford B. L., Jericho M. H., Xu W., Mulhern P. J., Beveridge T. J. Transmission electron microscopy, scanning tunneling microscopy, and atomic force microscopy of the cell envelope layers of the archaeobacterium Methanospirillum hungatei GP1. J Bacteriol. 1993 Apr;175(7):1946–1955. doi: 10.1128/jb.175.7.1946-1955.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sprott G. D., McKellar R. C. Composition and properties of the cell wall of Methanospirillum hungatii. Can J Microbiol. 1980 Feb;26(2):115–120. doi: 10.1139/m80-017. [DOI] [PubMed] [Google Scholar]
  16. Stewart M., Beveridge T. J., Sprott G. D. Crystalline order to high resolution in the sheath of Methanospirillum hungatei: a cross-beta structure. J Mol Biol. 1985 Jun 5;183(3):509–515. doi: 10.1016/0022-2836(85)90019-1. [DOI] [PubMed] [Google Scholar]
  17. Tao N. J., Lindsay S. M., Lees S. Measuring the microelastic properties of biological material. Biophys J. 1992 Oct;63(4):1165–1169. doi: 10.1016/S0006-3495(92)81692-2. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES