Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Jun;178(11):3140–3145. doi: 10.1128/jb.178.11.3140-3145.1996

Effect of CO2 on the fermentation capacities of the acetogen Peptostreptococcus productus U-1.

M Misoph 1, H L Drake 1
PMCID: PMC178064  PMID: 8655492

Abstract

The fermentative capacities of the acetogenic bacterium Peptostreptococcus productus U-1 (ATCC 35244) were examined. Although acetate was formed from all the substrates tested, additional products were produced in response to CO2 limitation. Under CO2-limited conditions, fructose-dependent growth yielded high levels of lactate as a reduced end product; lactate was also produced under CO2-enriched conditions when fructose concentrations were elevated. In the absence of supplemental CO2, xylose-dependent growth yielded lactate and succinate as major reduced end products. Although supplemental CO2 and acetogenesis stimulated cell yields on fructose, xylose-dependent cell yields were decreased in response to CO2 and acetogenesis. In contrast, glycerol-dependent growth yielded high levels of ethanol in the absence of supplemental CO2, and pyruvate was subject to only acetogenic utilization independent of CO2. CO2 pulsing during the growth of CO2-limited fructose cultures stopped lactate synthesis immediately, indicating that CO2-limited cells were nonetheless metabolically poised to respond quickly to exogenous CO2. Resting cells that were cultivated at the expense of fructose without supplemental CO2 readily consumed fructose in the absence of exogenous CO2 and formed only lactate. Although the specific activity of lactate dehydrogenase was not appreciably influenced by supplemental C02 during cultivation, cells cultivated on fructose under CO2-enriched conditions displayed minimal capacities to consume fructose in the absence of exogenous CO2. These results demonstrate that the utilization of alternative fermentations for the conservation of energy and growth of P. productus U-1 is augmented by the relative availability of CO2 and growth substrate.

Full Text

The Full Text of this article is available as a PDF (285.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andreesen J. R., Gottschalk G., Schlegel H. G. Clostridium formicoaceticum nov. spec. isolation, description and distinction from C. aceticum and C. thermoaceticum. Arch Mikrobiol. 1970;72(2):154–174. doi: 10.1007/BF00409521. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  3. Buschhorn H., Dürre P., Gottschalk G. Production and Utilization of Ethanol by the Homoacetogen Acetobacterium woodii. Appl Environ Microbiol. 1989 Jul;55(7):1835–1840. doi: 10.1128/aem.55.7.1835-1840.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cole S. T., Condon C., Lemire B. D., Weiner J. H. Molecular biology, biochemistry and bioenergetics of fumarate reductase, a complex membrane-bound iron-sulfur flavoenzyme of Escherichia coli. Biochim Biophys Acta. 1985 Dec;811(4):381–403. doi: 10.1016/0304-4173(85)90008-4. [DOI] [PubMed] [Google Scholar]
  5. Diekert G., Wohlfarth G. Metabolism of homocetogens. Antonie Van Leeuwenhoek. 1994;66(1-3):209–221. doi: 10.1007/BF00871640. [DOI] [PubMed] [Google Scholar]
  6. Dorn M., Andreesen J. R., Gottschalk G. Fumarate reductase of Clostridium formicoaceticum. A peripheral membrane protein. Arch Microbiol. 1978 Oct 4;119(1):7–11. doi: 10.1007/BF00407920. [DOI] [PubMed] [Google Scholar]
  7. Ezaki T., Li N., Hashimoto Y., Miura H., Yamamoto H. 16S ribosomal DNA sequences of anaerobic cocci and proposal of Ruminococcus hansenii comb. nov. and Ruminococcus productus comb. nov. Int J Syst Bacteriol. 1994 Jan;44(1):130–136. doi: 10.1099/00207713-44-1-130. [DOI] [PubMed] [Google Scholar]
  8. Holland R., Pritchard G. G. Regulation of the L-lactase dehydrogenase from Lactobacillus casei by fructose-1,6-diphosphate and metal ions. J Bacteriol. 1975 Mar;121(3):777–784. doi: 10.1128/jb.121.3.777-784.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lorowitz W. H., Bryant M. P. Peptostreptococcus productus strain that grows rapidly with CO as the energy source. Appl Environ Microbiol. 1984 May;47(5):961–964. doi: 10.1128/aem.47.5.961-964.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Macy J., Kulla H., Gottschalk G. H2-dependent anaerobic growth of Escherichia coli on L-malate: succinate formation. J Bacteriol. 1976 Feb;125(2):423–428. doi: 10.1128/jb.125.2.423-428.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Seifritz C., Daniel S. L., Gössner A., Drake H. L. Nitrate as a preferred electron sink for the acetogen Clostridium thermoaceticum. J Bacteriol. 1993 Dec;175(24):8008–8013. doi: 10.1128/jb.175.24.8008-8013.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Tanner R. S., Miller L. M., Yang D. Clostridium ljungdahlii sp. nov., an acetogenic species in clostridial rRNA homology group I. Int J Syst Bacteriol. 1993 Apr;43(2):232–236. doi: 10.1099/00207713-43-2-232. [DOI] [PubMed] [Google Scholar]
  13. Yamada T., Carlsson J. Regulation of lactate dehydrogenase and change of fermentation products in streptococci. J Bacteriol. 1975 Oct;124(1):55–61. doi: 10.1128/jb.124.1.55-61.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. de Vries W., Kapteijn W. M., van der Beek E. G., Stouthamer A. H. Molar growth yields and fermentation balances of Lactobacillus casei L3 in batch cultures and in continuous cultures. J Gen Microbiol. 1970 Nov;63(3):333–345. doi: 10.1099/00221287-63-3-333. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES