Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Jun;178(11):3238–3245. doi: 10.1128/jb.178.11.3238-3245.1996

The Streptomyces peucetius drrC gene encodes a UvrA-like protein involved in daunorubicin resistance and production.

N Lomovskaya 1, S K Hong 1, S U Kim 1, L Fonstein 1, K Furuya 1, R C Hutchinson 1
PMCID: PMC178076  PMID: 8655504

Abstract

The drrC gene, cloned from the daunorubicin (DNR)- and doxorubicin-producing strain of Streptomyces peucetius ATCC 29050, encodes a 764-amino-acid protein with a strong sequence similarity to the Escherichia coli and Micrococcus luteus UvrA proteins involved in excision repair of DNA. Expression of drrC was correlated with the timing of DNR production in the growth medium tested and was not dependent on the presence of DNR. Since introduction of drrC into Streptomyces lividans imparted a DNR resistance phenotype, this gene is believed to be a DNR resistance gene. The drrC gene could be disrupted in the non-DNR-producing S. peucetius dnrJ mutant but not in the wild-type strain, and the resulting dnrJ drrC double mutant was significantly more sensitive to DNR in efficiency-of-plating experiments. Expression of drrC in an E. coli uvrA strain conferred significant DNR resistance to this highly DNR-sensitive mutant. However, the DrrC protein did not complement the uvrA mutation to protect the mutant from the lethal effects of UV or mitomycin even though it enhanced the UV resistance of a uvrA+ strain. We speculate that the DrrC protein mediates a novel type of DNR resistance, possibly different from the mechanism of DNR resistance governed by the S. peucetius drrAB genes, which are believed to encode a DNR antiporter.

Full Text

The Full Text of this article is available as a PDF (973.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. August P. R., Flickinger M. C., Sherman D. H. Cloning and analysis of a locus (mcr) involved in mitomycin C resistance in Streptomyces lavendulae. J Bacteriol. 1994 Jul;176(14):4448–4454. doi: 10.1128/jb.176.14.4448-4454.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chater K. F., Bruton C. J. Mutational cloning in Streptomyces and the isolation of antibiotic production genes. Gene. 1983 Dec;26(1):67–78. doi: 10.1016/0378-1119(83)90037-9. [DOI] [PubMed] [Google Scholar]
  4. Clayton T. M., Bibb M. J. Streptomyces promoter-probe plasmids that utilise the xylE gene of Pseudomonas putida. Nucleic Acids Res. 1990 Feb 25;18(4):1077–1077. doi: 10.1093/nar/18.4.1077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Colombo A. L., Solinas M. M., Perini G., Biamonti G., Zanella G., Caruso M., Torti F., Filippini S., Inventi-Solari A., Garofano L. Expression of doxorubicin-daunorubicin resistance genes in different anthracycline-producing mutants of Streptomyces peucetius. J Bacteriol. 1992 Mar;174(5):1641–1646. doi: 10.1128/jb.174.5.1641-1646.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cundliffe E. How antibiotic-producing organisms avoid suicide. Annu Rev Microbiol. 1989;43:207–233. doi: 10.1146/annurev.mi.43.100189.001231. [DOI] [PubMed] [Google Scholar]
  7. DUBOST M., GANTER P., MARAL R., NINET L., PINNERT S., PREUDHOMME J., WERNER G. H. UN NOUVEL ANTIBIOTIQUE 'A PROPRI'ET'ES CYTOSTATIQUES: LA RUBIDOMYCINE. C R Hebd Seances Acad Sci. 1963 Sep 9;257:1813–1815. [PubMed] [Google Scholar]
  8. Dekleva M. L., Titus J. A., Strohl W. R. Nutrient effects on anthracycline production by Streptomyces peucetius in a defined medium. Can J Microbiol. 1985 Mar;31(3):287–294. doi: 10.1139/m85-053. [DOI] [PubMed] [Google Scholar]
  9. Denis F., Brzezinski R. An improved aminoglycoside resistance gene cassette for use in gram-negative bacteria and Streptomyces. FEMS Microbiol Lett. 1991 Jul 1;65(3):261–264. doi: 10.1016/0378-1097(91)90224-x. [DOI] [PubMed] [Google Scholar]
  10. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Feinstein E., Canaani E., Weiner L. M. Dependence of nucleic acid degradation on in situ free-radical production by adriamycin. Biochemistry. 1993 Dec 7;32(48):13156–13161. doi: 10.1021/bi00211a026. [DOI] [PubMed] [Google Scholar]
  12. Fernández-Moreno M. A., Caballero J. L., Hopwood D. A., Malpartida F. The act cluster contains regulatory and antibiotic export genes, direct targets for translational control by the bldA tRNA gene of Streptomyces. Cell. 1991 Aug 23;66(4):769–780. doi: 10.1016/0092-8674(91)90120-n. [DOI] [PubMed] [Google Scholar]
  13. Guilfoile P. G., Hutchinson C. R. A bacterial analog of the mdr gene of mammalian tumor cells is present in Streptomyces peucetius, the producer of daunorubicin and doxorubicin. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8553–8557. doi: 10.1073/pnas.88.19.8553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Guilfoile P. G., Hutchinson C. R. Sequence and transcriptional analysis of the Streptomyces glaucescens tcmAR tetracenomycin C resistance and repressor gene loci. J Bacteriol. 1992 Jun;174(11):3651–3658. doi: 10.1128/jb.174.11.3651-3658.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Higgins C. F., Hiles I. D., Salmond G. P., Gill D. R., Downie J. A., Evans I. J., Holland I. B., Gray L., Buckel S. D., Bell A. W. A family of related ATP-binding subunits coupled to many distinct biological processes in bacteria. Nature. 1986 Oct 2;323(6087):448–450. doi: 10.1038/323448a0. [DOI] [PubMed] [Google Scholar]
  16. Higgins C. F. Molecular basis of multidrug resistance mediated by P-glycoprotein. Curr Opin Biotechnol. 1991 Apr;2(2):278–281. doi: 10.1016/0958-1669(91)90021-v. [DOI] [PubMed] [Google Scholar]
  17. Hopwood D. A., Kieser T., Wright H. M., Bibb M. J. Plasmids, recombination and chromosome mapping in Streptomyces lividans 66. J Gen Microbiol. 1983 Jul;129(7):2257–2269. doi: 10.1099/00221287-129-7-2257. [DOI] [PubMed] [Google Scholar]
  18. Husain I., Van Houten B., Thomas D. C., Sancar A. Sequences of Escherichia coli uvrA gene and protein reveal two potential ATP binding sites. J Biol Chem. 1986 Apr 15;261(11):4895–4901. [PubMed] [Google Scholar]
  19. Ingram C., Brawner M., Youngman P., Westpheling J. xylE functions as an efficient reporter gene in Streptomyces spp.: use for the study of galP1, a catabolite-controlled promoter. J Bacteriol. 1989 Dec;171(12):6617–6624. doi: 10.1128/jb.171.12.6617-6624.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kacinski B. M., Rupp W. D. Interactions of the UVRABC endonuclease in vivo and in vitro with DNA damage produced by antineoplastic anthracyclines. Cancer Res. 1984 Aug;44(8):3489–3492. [PubMed] [Google Scholar]
  21. Kelemen G. H., Zalacain M., Culebras E., Seno E. T., Cundliffe E. Transcriptional attenuation control of the tylosin-resistance gene tlrA in Streptomyces fradiae. Mol Microbiol. 1994 Nov;14(4):833–842. doi: 10.1111/j.1365-2958.1994.tb01319.x. [DOI] [PubMed] [Google Scholar]
  22. Lampel J. S., Strohl W. R. Transformation and transfection of anthracycline-producing streptomycetes. Appl Environ Microbiol. 1986 Jan;51(1):126–131. doi: 10.1128/aem.51.1.126-131.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lomovskaya N. D., Chater K. F., Mkrtumian N. M. Genetics and molecular biology of Streptomyces bacteriophages. Microbiol Rev. 1980 Jun;44(2):206–229. doi: 10.1128/mr.44.2.206-229.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lomovskaya N. D., Mkrtumian N. M., Gostimskaya N. L., Danilenko V. N. Characterization of temperate actinophage phi C31 isolated from Streptomyces coelicolor A3(2). J Virol. 1972 Feb;9(2):258–262. doi: 10.1128/jvi.9.2.258-262.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Madduri K., Hutchinson C. R. Functional characterization and transcriptional analysis of a gene cluster governing early and late steps in daunorubicin biosynthesis in Streptomyces peucetius. J Bacteriol. 1995 Jul;177(13):3879–3884. doi: 10.1128/jb.177.13.3879-3884.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Madduri K., Hutchinson C. R. Functional characterization and transcriptional analysis of the dnrR1 locus, which controls daunorubicin biosynthesis in Streptomyces peucetius. J Bacteriol. 1995 Mar;177(5):1208–1215. doi: 10.1128/jb.177.5.1208-1215.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Malhotra K., Kim S. T., Sancar A. Characterization of a medium wavelength type DNA photolyase: purification and properties of photolyase from Bacillus firmus. Biochemistry. 1994 Jul 26;33(29):8712–8718. doi: 10.1021/bi00195a012. [DOI] [PubMed] [Google Scholar]
  28. Otten S. L., Liu X., Ferguson J., Hutchinson C. R. Cloning and characterization of the Streptomyces peucetius dnrQS genes encoding a daunosamine biosynthesis enzyme and a glycosyl transferase involved in daunorubicin biosynthesis. J Bacteriol. 1995 Nov;177(22):6688–6692. doi: 10.1128/jb.177.22.6688-6692.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Otten S. L., Stutzman-Engwall K. J., Hutchinson C. R. Cloning and expression of daunorubicin biosynthesis genes from Streptomyces peucetius and S. peucetius subsp. caesius. J Bacteriol. 1990 Jun;172(6):3427–3434. doi: 10.1128/jb.172.6.3427-3434.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Rosteck P. R., Jr, Reynolds P. A., Hershberger C. L. Homology between proteins controlling Streptomyces fradiae tylosin resistance and ATP-binding transport. Gene. 1991 Jun 15;102(1):27–32. doi: 10.1016/0378-1119(91)90533-h. [DOI] [PubMed] [Google Scholar]
  31. Sancar A., Hearst J. E. Molecular matchmakers. Science. 1993 Mar 5;259(5100):1415–1420. doi: 10.1126/science.8451638. [DOI] [PubMed] [Google Scholar]
  32. Schoner B., Geistlich M., Rosteck P., Jr, Rao R. N., Seno E., Reynolds P., Cox K., Burgett S., Hershberger C. Sequence similarity between macrolide-resistance determinants and ATP-binding transport proteins. Gene. 1992 Jun 15;115(1-2):93–96. doi: 10.1016/0378-1119(92)90545-z. [DOI] [PubMed] [Google Scholar]
  33. Selby C. P., Sancar A. Noncovalent drug-DNA binding interactions that inhibit and stimulate (A)BC excinuclease. Biochemistry. 1991 Apr 23;30(16):3841–3849. doi: 10.1021/bi00230a006. [DOI] [PubMed] [Google Scholar]
  34. Shiota S., Nakayama H. Micrococcus luteus homolog of the Escherichia coli uvrA gene: identification of a mutation in the UV-sensitive mutant DB7. Mol Gen Genet. 1989 Jun;217(2-3):332–340. doi: 10.1007/BF02464901. [DOI] [PubMed] [Google Scholar]
  35. Stutzman-Engwall K. J., Hutchinson C. R. Multigene families for anthracycline antibiotic production in Streptomyces peucetius. Proc Natl Acad Sci U S A. 1989 May;86(9):3135–3139. doi: 10.1073/pnas.86.9.3135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]
  37. Zalacain M., Cundliffe E. Cloning of tlrD, a fourth resistance gene, from the tylosin producer, Streptomyces fradiae. Gene. 1991 Jan 2;97(1):137–142. doi: 10.1016/0378-1119(91)90021-3. [DOI] [PubMed] [Google Scholar]
  38. Zalacain M., Cundliffe E. Methylation of 23S rRNA caused by tlrA (ermSF), a tylosin resistance determinant from Streptomyces fradiae. J Bacteriol. 1989 Aug;171(8):4254–4260. doi: 10.1128/jb.171.8.4254-4260.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES