Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Jun;178(11):3285–3292. doi: 10.1128/jb.178.11.3285-3292.1996

A Ti plasmid-encoded enzyme required for degradation of mannopine is functionally homologous to the T-region-encoded enzyme required for synthesis of this opine in crown gall tumors.

K S Kim 1, W S Chilton 1, S K Farrand 1
PMCID: PMC178082  PMID: 8655510

Abstract

The mocC gene encoded by the octopine/mannityl opine-type Ti plasmid pTi15955 is related at the nucleotide sequence level to mas1' encoded by the T region of this plasmid. While Mas1 is required for the synthesis of mannopine (MOP) by crown gall tumor cells, MocC is essential for the utilization of MOP by Agrobacterium spp. A cosmid clone of pTi15955, pYDH208, encodes mocC and confers the utilization of MOP on strain NT1 and on strain UIA5, a derivative of NT1 lacking the 450-kb cryptic plasmid pAtC58. NT1 or UIA5 harboring pYDH208 with an insertion mutation in mocC failed to utilize MOP as the sole carbon source. Plasmid pSa-C, which encodes only mocC, complemented this mutation in both strains. This plasmid also was sufficient to confer utilization of MOP on NT1 but not on UIA5. Computer analysis showed that MocC is related at the amino acid sequence level to members of the short-chain alcohol dehydrogenase family of oxidoreductases. Lysates prepared from Escherichia coli cells expressing mocC contained an enzymatic activity that oxidizes MOP to deoxyfructosyl glutamine (santhopine [SOP]) in the presence of NAD+. The reaction catalyzed by the MOP oxidoreductase is reversible; in the presence of NADH, the enzyme reduced SOP to MOP. The apparent Km values of the enzyme for MOP and SOP were 6.3 and 1.2 mM, respectively. Among analogs of MOP tested, only N-1-(1-deoxy-D-lyxityl)-L-glutamine and N-1-(1-deoxy-D-mannityl)-L-asparagine served as substrates for MOP oxidoreductase. These results indicate that mocC encodes an oxidoreductase that, as an oxidase, is essential for the catabolism of MOP. The reductase activity of this enzyme is precisely the reaction ascribed to its T-region-encoded homolog, Mas1, which is responsible for biosynthesis of mannopine in crown gall tumors.

Full Text

The Full Text of this article is available as a PDF (423.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  3. Chilton W. S., Chilton M. D. Mannityl opine analogs allow isolation of catabolic pathway regulatory mutants. J Bacteriol. 1984 May;158(2):650–658. doi: 10.1128/jb.158.2.650-658.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dessaux Y., Tempé J., Farrand S. K. Genetic analysis of mannityl opine catabolism in octopine-type Agrobacterium tumefaciens strain 15955. Mol Gen Genet. 1987 Jun;208(1-2):301–308. doi: 10.1007/BF00330457. [DOI] [PubMed] [Google Scholar]
  5. Ensor C. M., Tai H. H. Site-directed mutagenesis of the conserved tyrosine 151 of human placental NAD(+)-dependent 15-hydroxyprostaglandin dehydrogenase yields a catalytically inactive enzyme. Biochem Biophys Res Commun. 1991 Apr 30;176(2):840–845. doi: 10.1016/s0006-291x(05)80262-1. [DOI] [PubMed] [Google Scholar]
  6. Gerhardinger C., Taneda S., Marion M. S., Monnier V. M. Isolation, purification, and characterization of an Amadori product binding protein from a Pseudomonas sp. soil strain. J Biol Chem. 1994 Nov 4;269(44):27297–27302. [PubMed] [Google Scholar]
  7. Hayman G. T., Farrand S. K. Characterization and mapping of the agrocinopine-agrocin 84 locus on the nopaline Ti plasmid pTiC58. J Bacteriol. 1988 Apr;170(4):1759–1767. doi: 10.1128/jb.170.4.1759-1767.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hong S. B., Dessaux Y., Chilton W. S., Farrand S. K. Organization and regulation of the mannopine cyclase-associated opine catabolism genes in Agrobacterium tumefaciens 15955. J Bacteriol. 1993 Jan;175(2):401–410. doi: 10.1128/jb.175.2.401-410.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hong S. B., Farrand S. K. Functional role of the Ti plasmid-encoded catabolic mannopine cyclase in mannityl opine catabolism by Agrobacterium spp. J Bacteriol. 1994 Jun;176(12):3576–3583. doi: 10.1128/jb.176.12.3576-3583.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hong S. B., Farrand S. K. Purification and characterization of catabolic mannopine cyclase encoded by the Agrobacterium tumefaciens Ti plasmid pTi15955. J Bacteriol. 1996 Apr;178(8):2427–2430. doi: 10.1128/jb.178.8.2427-2430.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jany K. D., Ulmer W., Fröschle M., Pfleiderer G. Complete amino acid sequence of glucose dehydrogenase from Bacillus megaterium. FEBS Lett. 1984 Jan 2;165(1):6–10. doi: 10.1016/0014-5793(84)80003-4. [DOI] [PubMed] [Google Scholar]
  12. Jubier M. -F. Degradation of lysopine by an inducible membrane-bound oxidase in Agrobacterium tumefaciens. FEBS Lett. 1972 Dec 1;28(2):129–132. doi: 10.1016/0014-5793(72)80693-8. [DOI] [PubMed] [Google Scholar]
  13. Kim K. S., Farrand S. K. Ti plasmid-encoded genes responsible for catabolism of the crown gall opine mannopine by Agrobacterium tumefaciens are homologs of the T-region genes responsible for synthesis of this opine by the plant tumor. J Bacteriol. 1996 Jun;178(11):3275–3284. doi: 10.1128/jb.178.11.3275-3284.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Loviny T., Norton P. M., Hartley B. S. Ribitol dehydrogenase of Klebsiella aerogenes. Sequence of the structural gene. Biochem J. 1985 Sep 15;230(3):579–585. doi: 10.1042/bj2300579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Needleman S. B., Wunsch C. D. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol. 1970 Mar;48(3):443–453. doi: 10.1016/0022-2836(70)90057-4. [DOI] [PubMed] [Google Scholar]
  16. Rawlings M., Cronan J. E., Jr The gene encoding Escherichia coli acyl carrier protein lies within a cluster of fatty acid biosynthetic genes. J Biol Chem. 1992 Mar 25;267(9):5751–5754. [PubMed] [Google Scholar]
  17. Salomon F., Deblaere R., Leemans J., Hernalsteens J. P., Van Montagu M., Schell J. Genetic identification of functions of TR-DNA transcripts in octopine crown galls. EMBO J. 1984 Jan;3(1):141–146. doi: 10.1002/j.1460-2075.1984.tb01774.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Vaudequin-Dransart V., Petit A., Poncet C., Ponsonnet C., Nesme X., Jones J. B., Bouzar H., Chilton W. S., Dessaux Y. Novel Ti plasmids in Agrobacterium strains isolated from fig tree and chrysanthemum tumors and their opinelike molecules. Mol Plant Microbe Interact. 1995 Mar-Apr;8(2):311–321. doi: 10.1094/mpmi-8-0311. [DOI] [PubMed] [Google Scholar]
  19. Zambryski P. Basic processes underlying Agrobacterium-mediated DNA transfer to plant cells. Annu Rev Genet. 1988;22:1–30. doi: 10.1146/annurev.ge.22.120188.000245. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES