Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Jun;178(11):3369–3373. doi: 10.1128/jb.178.11.3369-3373.1996

Sequence of the bchG gene from Chloroflexus aurantiacus: relationship between chlorophyll synthase and other polyprenyltransferases.

J C Lopez 1, S Ryan 1, R E Blankenship 1
PMCID: PMC178097  PMID: 8655525

Abstract

The sequence of the Chloroflexus aurantiacus open reading frame thought to be the C. aurantiacus homolog of the Rhodobacter capsulatus bchG gene is reported. The BchG gene product catalyzes esterification of bacteriochlorophyllide a by geranylgeraniol-PPi during bacteriochlorophyll a biosynthesis. Homologs from Arabidopsis thaliana, Synechocystis sp. strain PCC6803, and C. aurantiacus were identified in database searches. Profile analysis identified three related polyprenyltransferase enzymes which attach an aliphatic alcohol PPi to an aromatic substrate. This suggests a broader relationship between chlorophyll synthases and other polyprenyltransferases.

Full Text

The Full Text of this article is available as a PDF (567.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Ashby M. N., Edwards P. A. Elucidation of the deficiency in two yeast coenzyme Q mutants. Characterization of the structural gene encoding hexaprenyl pyrophosphate synthetase. J Biol Chem. 1990 Aug 5;265(22):13157–13164. [PubMed] [Google Scholar]
  3. Ashby M. N., Kutsunai S. Y., Ackerman S., Tzagoloff A., Edwards P. A. COQ2 is a candidate for the structural gene encoding para-hydroxybenzoate:polyprenyltransferase. J Biol Chem. 1992 Feb 25;267(6):4128–4136. [PubMed] [Google Scholar]
  4. Beanland T. J. Evolutionary relationships between "Q-type" photosynthetic reaction centres: hypothesis-testing using parsimony. J Theor Biol. 1990 Aug 23;145(4):535–545. doi: 10.1016/s0022-5193(05)80487-4. [DOI] [PubMed] [Google Scholar]
  5. Blankenship R. E. Origin and early evolution of photosynthesis. Photosynth Res. 1992;33:91–111. [PubMed] [Google Scholar]
  6. Bollivar D. W., Wang S., Allen J. P., Bauer C. E. Molecular genetic analysis of terminal steps in bacteriochlorophyll a biosynthesis: characterization of a Rhodobacter capsulatus strain that synthesizes geranylgeraniol-esterified bacteriochlorophyll a. Biochemistry. 1994 Nov 1;33(43):12763–12768. doi: 10.1021/bi00209a006. [DOI] [PubMed] [Google Scholar]
  7. Carattoli A., Romano N., Ballario P., Morelli G., Macino G. The Neurospora crassa carotenoid biosynthetic gene (albino 3) reveals highly conserved regions among prenyltransferases. J Biol Chem. 1991 Mar 25;266(9):5854–5859. [PubMed] [Google Scholar]
  8. Del Sal G., Manfioletti G., Schneider C. The CTAB-DNA precipitation method: a common mini-scale preparation of template DNA from phagemids, phages or plasmids suitable for sequencing. Biotechniques. 1989 May;7(5):514–520. [PubMed] [Google Scholar]
  9. Dracheva S., Williams J. C., Van Driessche G., Van Beeumen J. J., Blankenship R. E. The primary structure of cytochrome c-554 from the green photosynthetic bacterium Chloroflexus aurantiacus. Biochemistry. 1991 Dec 3;30(48):11451–11458. doi: 10.1021/bi00112a012. [DOI] [PubMed] [Google Scholar]
  10. Engelman D. M., Steitz T. A., Goldman A. Identifying nonpolar transbilayer helices in amino acid sequences of membrane proteins. Annu Rev Biophys Biophys Chem. 1986;15:321–353. doi: 10.1146/annurev.bb.15.060186.001541. [DOI] [PubMed] [Google Scholar]
  11. Gaubier P., Wu H. J., Laudié M., Delseny M., Grellet F. A chlorophyll synthetase gene from Arabidopsis thaliana. Mol Gen Genet. 1995 Nov 1;249(1):58–64. doi: 10.1007/BF00290236. [DOI] [PubMed] [Google Scholar]
  12. Gribskov M., McLachlan A. D., Eisenberg D. Profile analysis: detection of distantly related proteins. Proc Natl Acad Sci U S A. 1987 Jul;84(13):4355–4358. doi: 10.1073/pnas.84.13.4355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
  14. Melzer M., Heide L. Characterization of polyprenyldiphosphate: 4-hydroxybenzoate polyprenyltransferase from Escherichia coli. Biochim Biophys Acta. 1994 Apr 14;1212(1):93–102. doi: 10.1016/0005-2760(94)90193-7. [DOI] [PubMed] [Google Scholar]
  15. Niedermeier G., Shiozawa J. A., Lottspeich F., Feick R. G. The primary structure of two chlorosome proteins from Chloroflexus aurantiacus. FEBS Lett. 1994 Mar 28;342(1):61–65. doi: 10.1016/0014-5793(94)80585-7. [DOI] [PubMed] [Google Scholar]
  16. Persson B., Argos P. Prediction of transmembrane segments in proteins utilising multiple sequence alignments. J Mol Biol. 1994 Mar 25;237(2):182–192. doi: 10.1006/jmbi.1994.1220. [DOI] [PubMed] [Google Scholar]
  17. Suzuki K., Ueda M., Yuasa M., Nakagawa T., Kawamukai M., Matsuda H. Evidence that Escherichia coli ubiA product is a functional homolog of yeast COQ2, and the regulation of ubiA gene expression. Biosci Biotechnol Biochem. 1994 Oct;58(10):1814–1819. doi: 10.1271/bbb.58.1814. [DOI] [PubMed] [Google Scholar]
  18. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Woese C. R. Bacterial evolution. Microbiol Rev. 1987 Jun;51(2):221–271. doi: 10.1128/mr.51.2.221-271.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES