Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Jun;178(12):3447–3456. doi: 10.1128/jb.178.12.3447-3456.1996

Topology of the membrane protein LamB by epitope tagging and a comparison with the X-ray model.

S M Newton 1, P E Klebba 1, V Michel 1, M Hofnung 1, A Charbit 1
PMCID: PMC178112  PMID: 8655540

Abstract

We previously developed a genetic approach to study, with a single antibody, the topology of the outer membrane protein LamB, an Escherichia coli porin with specificity towards maltodextrins and a receptor for bacteriophage lambda. Our initial procedure consisted of inserting at random the same reporter epitope (the C3 neutralization epitope from poliovirus) into permissive sites of LamB (i.e., sites which tolerate insertions without deleterious effects on the protein activities or the cell). A specific monoclonal antibody was then used to examine the position of the inserted epitope with respect to the protein and the membrane. In the present work, we set up a site-directed procedure to insert the C3 epitope at new sites in order to distinguish between two-dimensional folding models. This allowed us to identify two new surface loops of LamB and to predict another periplasmic exposed region. The results obtained by random and directed epitope tagging are analyzed in light of the recently published X-ray structure of the LamB protein. Study of 23 hybrid LamB-C3 proteins led to the direct identification of five of the nine external loops (L4, L5, L6, L7, and L9) and led to the prediction of four periplasmic loops (I1, I4, I5, and I8) of LamB. Nine of the hybrid proteins did not lead to topological conclusions, and none led to the wrong predictions or conclusions. The comparison indicates that parts of models based on secondary structure predictions alone are not reliable and points to the importance of experimental data in the establishment of outer membrane protein topological models. The advantages and limitations of genetic foreign epitope insertion for the study of integral membrane proteins are discussed.

Full Text

The Full Text of this article is available as a PDF (495.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agterberg M., Adriaanse H., Tommassen J. Use of outer membrane protein PhoE as a carrier for the transport of a foreign antigenic determinant to the cell surface of Escherichia coli K-12. Gene. 1987;59(1):145–150. doi: 10.1016/0378-1119(87)90275-7. [DOI] [PubMed] [Google Scholar]
  2. Anand R., Bason L., Saedi M. S., Gerzanich V., Peng X., Lindstrom J. Reporter epitopes: a novel approach to examine transmembrane topology of integral membrane proteins applied to the alpha 1 subunit of the nicotinic acetylcholine receptor. Biochemistry. 1993 Sep 28;32(38):9975–9984. doi: 10.1021/bi00089a013. [DOI] [PubMed] [Google Scholar]
  3. Benito A., Mateu M. G., Villaverde A. Improved mimicry of a foot-and-mouth disease virus antigenic site by a viral peptide displayed on beta-galactosidase surface. Biotechnology (N Y) 1995 Aug;13(8):801–804. doi: 10.1038/nbt0895-801. [DOI] [PubMed] [Google Scholar]
  4. Betton J. M., Hofnung M. In vivo assembly of active maltose binding protein from independently exported protein fragments. EMBO J. 1994 Mar 1;13(5):1226–1234. doi: 10.1002/j.1460-2075.1994.tb06372.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Borjigin J., Nathans J. Insertional mutagenesis as a probe of rhodopsin's topography, stability, and activity. J Biol Chem. 1994 May 20;269(20):14715–14722. [PubMed] [Google Scholar]
  6. Boulain J. C., Charbit A., Hofnung M. Mutagenesis by random linker insertion into the lamB gene of Escherichia coli K12. Mol Gen Genet. 1986 Nov;205(2):339–348. doi: 10.1007/BF00430448. [DOI] [PubMed] [Google Scholar]
  7. Charbit A., Boulain J. C., Ryter A., Hofnung M. Probing the topology of a bacterial membrane protein by genetic insertion of a foreign epitope; expression at the cell surface. EMBO J. 1986 Nov;5(11):3029–3037. doi: 10.1002/j.1460-2075.1986.tb04602.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Charbit A., Gehring K., Nikaido H., Ferenci T., Hofnung M. Maltose transport and starch binding in phage-resistant point mutants of maltoporin. Functional and topological implications. J Mol Biol. 1988 Jun 5;201(3):487–496. doi: 10.1016/0022-2836(88)90630-4. [DOI] [PubMed] [Google Scholar]
  9. Charbit A., Ronco J., Michel V., Werts C., Hofnung M. Permissive sites and topology of an outer membrane protein with a reporter epitope. J Bacteriol. 1991 Jan;173(1):262–275. doi: 10.1128/jb.173.1.262-275.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Charbit A., Werts C., Michel V., Klebba P. E., Quillardet P., Hofnung M. A role for residue 151 of LamB in bacteriophage lambda adsorption: possible steric effect of amino acid substitutions. J Bacteriol. 1994 Jun;176(11):3204–3209. doi: 10.1128/jb.176.11.3204-3209.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Clément J. M., Hofnung M. Gene sequence of the lambda receptor, an outer membrane protein of E. coli K12. Cell. 1981 Dec;27(3 Pt 2):507–514. doi: 10.1016/0092-8674(81)90392-5. [DOI] [PubMed] [Google Scholar]
  12. Cowan S. W., Schirmer T., Rummel G., Steiert M., Ghosh R., Pauptit R. A., Jansonius J. N., Rosenbusch J. P. Crystal structures explain functional properties of two E. coli porins. Nature. 1992 Aug 27;358(6389):727–733. doi: 10.1038/358727a0. [DOI] [PubMed] [Google Scholar]
  13. Desaymard C., Débarbouillé M., Jolit M., Schwartz M. Mutations affecting antigenic determinants of an outer membrane protein of Escherichia coli. EMBO J. 1986 Jun;5(6):1383–1388. doi: 10.1002/j.1460-2075.1986.tb04371.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ferenci T., Boos W. The role of the Escherichia coli lambda receptor in the transport of maltose and maltodextrins. J Supramol Struct. 1980;13(1):101–116. doi: 10.1002/jss.400130110. [DOI] [PubMed] [Google Scholar]
  15. Francis G., Brennan L., Stretton S., Ferenci T. Genetic mapping of starch- and lambda-receptor sites in maltoporin: identification of substitutions causing direct and indirect effects on binding sites by cysteine mutagenesis. Mol Microbiol. 1991 Sep;5(9):2293–2301. doi: 10.1111/j.1365-2958.1991.tb02160.x. [DOI] [PubMed] [Google Scholar]
  16. Gabay J., Schwartz M. Monoclonal antibody as a probe for structure and function of an Escherichia coli outer membrane protein. J Biol Chem. 1982 Jun 25;257(12):6627–6630. [PubMed] [Google Scholar]
  17. Hofnung M. An intelligent channel (and more). Science. 1995 Jan 27;267(5197):473–474. doi: 10.1126/science.7824946. [DOI] [PubMed] [Google Scholar]
  18. Horaud F., Crainic R., Van der Werf S., Blondel B., Wichowski C., Akacem O., Bruneau P., Couillin P., Siffert O., Girard M. Identification and characterization of a continuous neutralization epitope (C3) present on type 1 poliovirus. Prog Med Virol. 1987;34:129–155. [PubMed] [Google Scholar]
  19. Klebba P. E., Hofnung M., Charbit A. A model of maltodextrin transport through the sugar-specific porin, LamB, based on deletion analysis. EMBO J. 1994 Oct 3;13(19):4670–4675. doi: 10.1002/j.1460-2075.1994.tb06790.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kreusch A., Neubüser A., Schiltz E., Weckesser J., Schulz G. E. Structure of the membrane channel porin from Rhodopseudomonas blastica at 2.0 A resolution. Protein Sci. 1994 Jan;3(1):58–63. doi: 10.1002/pro.5560030108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Marchal C., Hofnung M. Negative dominance in gene lamB: random assembly of secreted subunits issued from different polysomes. EMBO J. 1983;2(1):81–86. doi: 10.1002/j.1460-2075.1983.tb01385.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Moeck G. S., Bazzaz B. S., Gras M. F., Ravi T. S., Ratcliffe M. J., Coulton J. W. Genetic insertion and exposure of a reporter epitope in the ferrichrome-iron receptor of Escherichia coli K-12. J Bacteriol. 1994 Jul;176(14):4250–4259. doi: 10.1128/jb.176.14.4250-4259.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Nakae T., Ishii J. N. Molecular weights and subunit structure of LamB proteins. Ann Microbiol (Paris) 1982 Jan;133A(1):21–25. [PubMed] [Google Scholar]
  24. Neuhaus J. M. The receptor protein of phage lambda: purification, characterization and preliminary electrical studies in planar lipid bilayers. Ann Microbiol (Paris) 1982 Jan;133A(1):27–32. [PubMed] [Google Scholar]
  25. Nikaido H., Saier M. H., Jr Transport proteins in bacteria: common themes in their design. Science. 1992 Nov 6;258(5084):936–942. doi: 10.1126/science.1279804. [DOI] [PubMed] [Google Scholar]
  26. Nikaido H., Vaara M. Molecular basis of bacterial outer membrane permeability. Microbiol Rev. 1985 Mar;49(1):1–32. doi: 10.1128/mr.49.1.1-32.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Popot J. L., Saraste M. Engineering membrane proteins. Curr Opin Biotechnol. 1995 Aug;6(4):394–402. doi: 10.1016/0958-1669(95)80068-9. [DOI] [PubMed] [Google Scholar]
  28. Prinz W. A., Beckwith J. Gene fusion analysis of membrane protein topology: a direct comparison of alkaline phosphatase and beta-lactamase fusions. J Bacteriol. 1994 Oct;176(20):6410–6413. doi: 10.1128/jb.176.20.6410-6413.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Schirmer T., Cowan S. W. Prediction of membrane-spanning beta-strands and its application to maltoporin. Protein Sci. 1993 Aug;2(8):1361–1363. doi: 10.1002/pro.5560020820. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Schirmer T., Keller T. A., Wang Y. F., Rosenbusch J. P. Structural basis for sugar translocation through maltoporin channels at 3.1 A resolution. Science. 1995 Jan 27;267(5197):512–514. doi: 10.1126/science.7824948. [DOI] [PubMed] [Google Scholar]
  31. Struyvé M., Moons M., Tommassen J. Carboxy-terminal phenylalanine is essential for the correct assembly of a bacterial outer membrane protein. J Mol Biol. 1991 Mar 5;218(1):141–148. doi: 10.1016/0022-2836(91)90880-f. [DOI] [PubMed] [Google Scholar]
  32. Sukhan A., Hancock R. E. Insertion mutagenesis of the Pseudomonas aeruginosa phosphate-specific porin OprP. J Bacteriol. 1995 Sep;177(17):4914–4920. doi: 10.1128/jb.177.17.4914-4920.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Taylor I. M., Harrison J. L., Timmis K. N., O'Connor C. D. The TraT lipoprotein as a vehicle for the transport of foreign antigenic determinants to the cell surface of Escherichia coli K12: structure-function relationships in the TraT protein. Mol Microbiol. 1990 Aug;4(8):1259–1268. doi: 10.1111/j.1365-2958.1990.tb00705.x. [DOI] [PubMed] [Google Scholar]
  34. Teufel M., Pompejus M., Humbel B., Friedrich K., Fritz H. J. Properties of bacteriorhodopsin derivatives constructed by insertion of an exogenous epitope into extra-membrane loops. EMBO J. 1993 Sep;12(9):3399–3408. doi: 10.1002/j.1460-2075.1993.tb06014.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Traxler B., Boyd D., Beckwith J. The topological analysis of integral cytoplasmic membrane proteins. J Membr Biol. 1993 Feb;132(1):1–11. doi: 10.1007/BF00233047. [DOI] [PubMed] [Google Scholar]
  36. Weiss M. S., Schulz G. E. Structure of porin refined at 1.8 A resolution. J Mol Biol. 1992 Sep 20;227(2):493–509. doi: 10.1016/0022-2836(92)90903-w. [DOI] [PubMed] [Google Scholar]
  37. Werts C., O'Callaghan D., Hofnung M., Charbit A. Immunological relatedness of the LamB proteins among members of Enterobacteriaceae. J Gen Microbiol. 1993 Apr;139(4):881–887. doi: 10.1099/00221287-139-4-881. [DOI] [PubMed] [Google Scholar]
  38. Wien M. W., Filman D. J., Stura E. A., Guillot S., Delpeyroux F., Crainic R., Hogle J. M. Structure of the complex between the Fab fragment of a neutralizing antibody for type 1 poliovirus and its viral epitope. Nat Struct Biol. 1995 Mar;2(3):232–243. doi: 10.1038/nsb0395-232. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES