Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Jun;178(12):3486–3495. doi: 10.1128/jb.178.12.3486-3495.1996

Role of DNA repair in Bacillus subtilis spore resistance.

B Setlow 1, P Setlow 1
PMCID: PMC178117  PMID: 8655545

Abstract

Wet-heat or hydrogen peroxide treatment of wild-type Bacillus subtilis spores did not result in induction of lacZ fusions to three DNA repair-related genes (dinR, recA, and uvrC) during spore outgrowth. However, these genes were induced during outgrowth of wild-type spores treated with dry heat or UV. Wet-heat, desiccation, dry-heat, or UV treatment of spores lacking major DNA-binding proteins (termed alpha-beta- spores) also resulted in induction of the three DNA repair genes during spore outgrowth. Hydrogen peroxide treatment of alpha-beta-spores did not result in induction of dinR- and rerA-lacZ but did cause induction of uvrC-lacZ during spore outgrowth. Spores of a recA mutant were approximately twofold more UV sensitive and approximately ninefold more sensitive to dry heat than were wild-type spores but were no more sensitive to wet heat and hydrogen peroxide. In contrast, alpha-beta- recA spores were significantly more sensitive than were alpha-beta- spores to all four treatments, as well as to desiccation. Surprisingly, RecA levels were quite low in dormant spores, but RecA was synthesized during spore outgrowth. Taken together, these data (i) are consistent with previous suggestions that some treatments (dry heat and UV with wild-type spores; desiccation, dry and wet heat, hydrogen peroxide, and UV with alpha-beta- spores) that kill spores do so in large part by causing DNA damage and (ii) indicate that repair of DNA damage during spore outgrowth is an important component of spore resistance to a number of treatments, as has been shown previously for UV.

Full Text

The Full Text of this article is available as a PDF (391.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bloomfield S. F., Arthur M. Mechanisms of inactivation and resistance of spores to chemical biocides. Soc Appl Bacteriol Symp Ser. 1994;23:91S–104S. doi: 10.1111/j.1365-2672.1994.tb04361.x. [DOI] [PubMed] [Google Scholar]
  2. Bol D. K., Yasbin R. E. Analysis of the dual regulatory mechanisms controlling expression of the vegetative catalase gene of Bacillus subtilis. J Bacteriol. 1994 Nov;176(21):6744–6748. doi: 10.1128/jb.176.21.6744-6748.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bol D. K., Yasbin R. E. Characterization of an inducible oxidative stress system in Bacillus subtilis. J Bacteriol. 1990 Jun;172(6):3503–3506. doi: 10.1128/jb.172.6.3503-3506.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chen L., Keramati L., Helmann J. D. Coordinate regulation of Bacillus subtilis peroxide stress genes by hydrogen peroxide and metal ions. Proc Natl Acad Sci U S A. 1995 Aug 29;92(18):8190–8194. doi: 10.1073/pnas.92.18.8190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chen N. Y., Zhang J. J., Paulus H. Chromosomal location of the Bacillus subtilis aspartokinase II gene and nucleotide sequence of the adjacent genes homologous to uvrC and trx of Escherichia coli. J Gen Microbiol. 1989 Nov;135(11):2931–2940. doi: 10.1099/00221287-135-11-2931. [DOI] [PubMed] [Google Scholar]
  6. Cheo D. L., Bayles K. W., Yasbin R. E. Cloning and characterization of DNA damage-inducible promoter regions from Bacillus subtilis. J Bacteriol. 1991 Mar;173(5):1696–1703. doi: 10.1128/jb.173.5.1696-1703.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cheo D. L., Bayles K. W., Yasbin R. E. Molecular characterization of regulatory elements controlling expression of the Bacillus subtilis recA+ gene. Biochimie. 1992 Jul-Aug;74(7-8):755–762. doi: 10.1016/0300-9084(92)90148-8. [DOI] [PubMed] [Google Scholar]
  8. Duwat P., Ehrlich S. D., Gruss A. The recA gene of Lactococcus lactis: characterization and involvement in oxidative and thermal stress. Mol Microbiol. 1995 Sep;17(6):1121–1131. doi: 10.1111/j.1365-2958.1995.mmi_17061121.x. [DOI] [PubMed] [Google Scholar]
  9. Fairhead H., Setlow B., Setlow P. Prevention of DNA damage in spores and in vitro by small, acid-soluble proteins from Bacillus species. J Bacteriol. 1993 Mar;175(5):1367–1374. doi: 10.1128/jb.175.5.1367-1374.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fairhead H., Setlow B., Waites W. M., Setlow P. Small, acid-soluble proteins bound to DNA protect Bacillus subtilis spores from being killed by freeze-drying. Appl Environ Microbiol. 1994 Jul;60(7):2647–2649. doi: 10.1128/aem.60.7.2647-2649.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hanlin J. H., Lombardi S. J., Slepecky R. A. Heat and UV light resistance of vegetative cells and spores of Bacillus subtilis Rec-mutants. J Bacteriol. 1985 Aug;163(2):774–777. doi: 10.1128/jb.163.2.774-777.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lovett C. M., Jr, Cho K. C., O'Gara T. M. Purification of an SOS repressor from Bacillus subtilis. J Bacteriol. 1993 Nov;175(21):6842–6849. doi: 10.1128/jb.175.21.6842-6849.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lovett C. M., Jr, Love P. E., Yasbin R. E., Roberts J. W. SOS-like induction in Bacillus subtilis: induction of the RecA protein analog and a damage-inducible operon by DNA damage in Rec+ and DNA repair-deficient strains. J Bacteriol. 1988 Apr;170(4):1467–1474. doi: 10.1128/jb.170.4.1467-1474.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lovett C. M., Jr, O'Gara T. M., Woodruff J. N. Analysis of the SOS inducing signal in Bacillus subtilis using Escherichia coli LexA as a probe. J Bacteriol. 1994 Aug;176(16):4914–4923. doi: 10.1128/jb.176.16.4914-4923.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mason J. M., Setlow P. Essential role of small, acid-soluble spore proteins in resistance of Bacillus subtilis spores to UV light. J Bacteriol. 1986 Jul;167(1):174–178. doi: 10.1128/jb.167.1.174-178.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mattimore V., Battista J. R. Radioresistance of Deinococcus radiodurans: functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation. J Bacteriol. 1996 Feb;178(3):633–637. doi: 10.1128/jb.178.3.633-637.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Munakata N., Rupert C. S. Dark repair of DNA containing "spore photoproduct" in Bacillus subtilis. Mol Gen Genet. 1974 May 31;130(3):239–250. doi: 10.1007/BF00268802. [DOI] [PubMed] [Google Scholar]
  18. Munakata N., Rupert C. S. Effects of DNA-polymerase-defective and recombination-deficient mutations on the ultraviolet sensitivity of Bacillus subtilis spores. Mutat Res. 1975 Feb;27(2):157–169. doi: 10.1016/0027-5107(75)90075-5. [DOI] [PubMed] [Google Scholar]
  19. Munakata N., Rupert C. S. Genetically controlled removal of "spore photoproduct" from deoxyribonucleic acid of ultraviolet-irradiated Bacillus subtilis spores. J Bacteriol. 1972 Jul;111(1):192–198. doi: 10.1128/jb.111.1.192-198.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Pedraza-Reyes M., Gutiérrez-Corona F., Nicholson W. L. Temporal regulation and forespore-specific expression of the spore photoproduct lyase gene by sigma-G RNA polymerase during Bacillus subtilis sporulation. J Bacteriol. 1994 Jul;176(13):3983–3991. doi: 10.1128/jb.176.13.3983-3991.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Popham D. L., Sengupta S., Setlow P. Heat, hydrogen peroxide, and UV resistance of Bacillus subtilis spores with increased core water content and with or without major DNA-binding proteins. Appl Environ Microbiol. 1995 Oct;61(10):3633–3638. doi: 10.1128/aem.61.10.3633-3638.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Popham D. L., Setlow P. Cloning, nucleotide sequence, and mutagenesis of the Bacillus subtilis ponA operon, which codes for penicillin-binding protein (PBP) 1 and a PBP-related factor. J Bacteriol. 1995 Jan;177(2):326–335. doi: 10.1128/jb.177.2.326-335.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Popham D. L., Setlow P. Cloning, nucleotide sequence, mutagenesis, and mapping of the Bacillus subtilis pbpD gene, which codes for penicillin-binding protein 4. J Bacteriol. 1994 Dec;176(23):7197–7205. doi: 10.1128/jb.176.23.7197-7205.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Raymond-Denise A., Guillen N. Identification of dinR, a DNA damage-inducible regulator gene of Bacillus subtilis. J Bacteriol. 1991 Nov;173(22):7084–7091. doi: 10.1128/jb.173.22.7084-7091.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sanchez-Salas J. L., Santiago-Lara M. L., Setlow B., Sussman M. D., Setlow P. Properties of Bacillus megaterium and Bacillus subtilis mutants which lack the protease that degrades small, acid-soluble proteins during spore germination. J Bacteriol. 1992 Feb;174(3):807–814. doi: 10.1128/jb.174.3.807-814.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sanchez-Salas J. L., Setlow P. Proteolytic processing of the protease which initiates degradation of small, acid-soluble proteins during germination of Bacillus subtilis spores. J Bacteriol. 1993 May;175(9):2568–2577. doi: 10.1128/jb.175.9.2568-2577.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Setlow B., Hand A. R., Setlow P. Synthesis of a Bacillus subtilis small, acid-soluble spore protein in Escherichia coli causes cell DNA to assume some characteristics of spore DNA. J Bacteriol. 1991 Mar;173(5):1642–1653. doi: 10.1128/jb.173.5.1642-1653.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Setlow B., Setlow P. Binding of small, acid-soluble spore proteins to DNA plays a significant role in the resistance of Bacillus subtilis spores to hydrogen peroxide. Appl Environ Microbiol. 1993 Oct;59(10):3418–3423. doi: 10.1128/aem.59.10.3418-3423.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Setlow B., Setlow P. Dipicolinic Acid Greatly Enhances Production of Spore Photoproduct in Bacterial Spores upon UV Irradiation. Appl Environ Microbiol. 1993 Feb;59(2):640–643. doi: 10.1128/aem.59.2.640-643.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Setlow B., Setlow P. Small, acid-soluble proteins bound to DNA protect Bacillus subtilis spores from killing by dry heat. Appl Environ Microbiol. 1995 Jul;61(7):2787–2790. doi: 10.1128/aem.61.7.2787-2790.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Setlow B., Setlow P. Thymine-containing dimers as well as spore photoproducts are found in ultraviolet-irradiated Bacillus subtilis spores that lack small acid-soluble proteins. Proc Natl Acad Sci U S A. 1987 Jan;84(2):421–423. doi: 10.1073/pnas.84.2.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Setlow P. Mechanisms for the prevention of damage to DNA in spores of Bacillus species. Annu Rev Microbiol. 1995;49:29–54. doi: 10.1146/annurev.mi.49.100195.000333. [DOI] [PubMed] [Google Scholar]
  33. Setlow P. Mechanisms which contribute to the long-term survival of spores of Bacillus species. Soc Appl Bacteriol Symp Ser. 1994;23:49S–60S. doi: 10.1111/j.1365-2672.1994.tb04357.x. [DOI] [PubMed] [Google Scholar]
  34. Setlow P. Small, acid-soluble spore proteins of Bacillus species: structure, synthesis, genetics, function, and degradation. Annu Rev Microbiol. 1988;42:319–338. doi: 10.1146/annurev.mi.42.100188.001535. [DOI] [PubMed] [Google Scholar]
  35. Spizizen J. TRANSFORMATION OF BIOCHEMICALLY DEFICIENT STRAINS OF BACILLUS SUBTILIS BY DEOXYRIBONUCLEATE. Proc Natl Acad Sci U S A. 1958 Oct 15;44(10):1072–1078. doi: 10.1073/pnas.44.10.1072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Sun D., Fajardo-Cavazos P., Sussman M. D., Tovar-Rojo F., Cabrera-Martinez R. M., Setlow P. Effect of chromosome location of Bacillus subtilis forespore genes on their spo gene dependence and transcription by E sigma F: identification of features of good E sigma F-dependent promoters. J Bacteriol. 1991 Dec;173(24):7867–7874. doi: 10.1128/jb.173.24.7867-7874.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES