Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Jun;178(12):3501–3507. doi: 10.1128/jb.178.12.3501-3507.1996

Purification and properties of an amidase from Rhodococcus erythropolis MP50 which enantioselectively hydrolyzes 2-arylpropionamides.

B Hirrlinger 1, A Stolz 1, H J Knackmuss 1
PMCID: PMC178119  PMID: 8655547

Abstract

An enantioselective amidase from Rhodococcus erythropolis MP50 was purified to homogeneity. The enzyme has a molecular weight of about 480,000 and is composed of identical subunits with molecular weights of about 61,000. The NH2-terminal amino acid sequence was significantly different from previously published sequences of bacterial amidases. The purified amidase hydrolyzed a wide range of aliphatic and aromatic amides, The highest enzyme activities were found with amides carrying hydrophobic residues, such as pentyl or naphthoyl. The purified enzyme converted racemic 2-phenylpropionamide, naproxen amide [2-(6-methoxy-2-naphthyl) propionamide], and ketoprofen amide [2-(3'-benzoylphenyl)propionamide] to the corresponding S-acids with an enantiomeric excess of >99% and an almost 50% conversion of the racemic amides. The enzyme also hydrolyzed different alpha-amino amides but without significant enantioselectivity.

Full Text

The Full Text of this article is available as a PDF (307.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ajabnoor M. A., Ray L. E., Wagner F. W. Bacillus subtilis aminopeptidase: specificity toward amino acid amides, dipeptides, and oligopeptides. Arch Biochem Biophys. 1980 Jul;202(2):540–545. doi: 10.1016/0003-9861(80)90460-9. [DOI] [PubMed] [Google Scholar]
  2. Asano Y., Kato Y., Yamada A., Kondo K. Structural similarity of D-aminopeptidase to carboxypeptidase DD and beta-lactamases. Biochemistry. 1992 Mar 3;31(8):2316–2328. doi: 10.1021/bi00123a016. [DOI] [PubMed] [Google Scholar]
  3. Asano Y., Mori T., Hanamoto S., Kato Y., Nakazawa A. A new D-stereospecific amino acid amidase from Ochrobactrum anthropi. Biochem Biophys Res Commun. 1989 Jul 14;162(1):470–474. doi: 10.1016/0006-291x(89)92021-4. [DOI] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  5. Brammar W. J., Charles I. G., Matfield M., Liu C. P., Drew R. E., Clarke P. H. The nucleotide sequence of the amiE gene of Pseudomonas aeruginosa. FEBS Lett. 1987 May 11;215(2):291–294. doi: 10.1016/0014-5793(87)80164-3. [DOI] [PubMed] [Google Scholar]
  6. Ciskanik L. M., Wilczek J. M., Fallon R. D. Purification and Characterization of an Enantioselective Amidase from Pseudomonas chlororaphis B23. Appl Environ Microbiol. 1995 Mar;61(3):998–1003. doi: 10.1128/aem.61.3.998-1003.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gilligan T., Yamada H., Nagasawa T. Production of S-(+)-2-phenylpropionic acid from (R,S)-2-phenylpropionitrile by the combination of nitrile hydratase and stereoselective amidase in Rhodococcus equi TG328. Appl Microbiol Biotechnol. 1993 Aug;39(6):720–725. doi: 10.1007/BF00164456. [DOI] [PubMed] [Google Scholar]
  8. Hermes H. F., Tandler R. F., Sonke T., Dijkhuizen L., Meijer E. M. Purification and Characterization of an l-Amino Amidase from Mycobacterium neoaurum ATCC 25795. Appl Environ Microbiol. 1994 Jan;60(1):153–159. doi: 10.1128/aem.60.1.153-159.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hynes M. J., Pateman J. A. The use of amides as nitrogen sources by Aspergillus nidulans. J Gen Microbiol. 1970 Nov;63(3):317–324. doi: 10.1099/00221287-63-3-317. [DOI] [PubMed] [Google Scholar]
  10. JAKOBY W. B., FREDERICKS J. REACTIONS CATALYZED BY AMIDASES. ACETAMIDASE. J Biol Chem. 1964 Jun;239:1978–1982. [PubMed] [Google Scholar]
  11. KELLY M., CLARKE P. H. An inducible amidase produced by a strain of Pseudomonas aeruginosa. J Gen Microbiol. 1962 Feb;27:305–316. doi: 10.1099/00221287-27-2-305. [DOI] [PubMed] [Google Scholar]
  12. Kobayashi M., Komeda H., Nagasawa T., Nishiyama M., Horinouchi S., Beppu T., Yamada H., Shimizu S. Amidase coupled with low-molecular-mass nitrile hydratase from Rhodococcus rhodochrous J1. Sequencing and expression of the gene and purification and characterization of the gene product. Eur J Biochem. 1993 Oct 1;217(1):327–336. doi: 10.1111/j.1432-1033.1993.tb18250.x. [DOI] [PubMed] [Google Scholar]
  13. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  14. Layh N., Stolz A., Böhme J., Effenberger F., Knackmuss H. J. Enantioselective hydrolysis of racemic naproxen nitrile and naproxen amide to S-naproxen by new bacterial isolates. J Biotechnol. 1994 Mar 31;33(2):175–182. doi: 10.1016/0168-1656(94)90109-0. [DOI] [PubMed] [Google Scholar]
  15. Maestracci M., Bui K., Thiéry A., Arnaud A., Galzy P. The amidases from a Brevibacterium strain: study and applications. Adv Biochem Eng Biotechnol. 1988;36:67–115. doi: 10.1007/BFb0047945. [DOI] [PubMed] [Google Scholar]
  16. Mahenthiralingam E., Draper P., Davis E. O., Colston M. J. Cloning and sequencing of the gene which encodes the highly inducible acetamidase of Mycobacterium smegmatis. J Gen Microbiol. 1993 Mar;139(3):575–583. doi: 10.1099/00221287-139-3-575. [DOI] [PubMed] [Google Scholar]
  17. Mayaux J. F., Cerbelaud E., Soubrier F., Yeh P., Blanche F., Pétré D. Purification, cloning, and primary structure of a new enantiomer-selective amidase from a Rhodococcus strain: structural evidence for a conserved genetic coupling with nitrile hydratase. J Bacteriol. 1991 Nov;173(21):6694–6704. doi: 10.1128/jb.173.21.6694-6704.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mayaux J. F., Cerebelaud E., Soubrier F., Faucher D., Pétré D. Purification, cloning, and primary structure of an enantiomer-selective amidase from Brevibacterium sp. strain R312: structural evidence for genetic coupling with nitrile hydratase. J Bacteriol. 1990 Dec;172(12):6764–6773. doi: 10.1128/jb.172.12.6764-6773.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Merril C. R., Goldman D., Sedman S. A., Ebert M. H. Ultrasensitive stain for proteins in polyacrylamide gels shows regional variation in cerebrospinal fluid proteins. Science. 1981 Mar 27;211(4489):1437–1438. doi: 10.1126/science.6162199. [DOI] [PubMed] [Google Scholar]
  20. Nishiyama M., Horinouchi S., Kobayashi M., Nagasawa T., Yamada H., Beppu T. Cloning and characterization of genes responsible for metabolism of nitrile compounds from Pseudomonas chlororaphis B23. J Bacteriol. 1991 Apr;173(8):2465–2472. doi: 10.1128/jb.173.8.2465-2472.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Soubrier F., Lévy-Schil S., Mayaux J. F., Pétré D., Arnaud A., Crouzet J. Cloning and primary structure of the wide-spectrum amidase from Brevibacterium sp. R312: high homology to the amiE product from Pseudomonas aeruginosa. Gene. 1992 Jul 1;116(1):99–104. doi: 10.1016/0378-1119(92)90635-3. [DOI] [PubMed] [Google Scholar]
  22. Thalenfeld B., Grossowicz N. Regulatory properties of an inducible aliphatic amidase in a thermophilic bacillus. J Gen Microbiol. 1976 May;94(1):131–141. doi: 10.1099/00221287-94-1-131. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES