Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Jun;178(12):3539–3543. doi: 10.1128/jb.178.12.3539-3543.1996

Purification and characterization of an oxygen-sensitive, reversible 3,4-dihydroxybenzoate decarboxylase from Clostridium hydroxybenzoicum.

Z He 1, J Wiegel 1
PMCID: PMC178123  PMID: 8655551

Abstract

A 3,4-dihydroxybenzoate decarboxylase (EC 4.1.1.63) from Clostridium hydroxybenzoicum JW/Z-1T was purified and partially characterized. The estimated molecular mass of the enzyme was 270 kDa. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis gave a single band of 57 kDa, suggesting that the enzyme consists of five identical subunits. The temperature and pH optima were 50 degrees C and pH 7.0, respectively. The Arrhenius energy for decarboxylation of 3,4-dihydroxybenzoate was 32.5 kJ . mol(-1) for the temperature range from 22 to 50 degrees C. The Km and kcat for 3,4-dihydroxybenzoate were 0.6 mM and 5.4 x 10(3) min(-1), respectively, at pH 7.0 and 25 degrees C. The enzyme optimally catalyzed the reverse reaction, that is, the carboxylation of catechol to 3,4-dihydroxybenzoate, at pH 7.0. The enzyme did not decarboxylate 2-hydroxybenzoate, 3-hydroxybenzoate, 4-hydroxybenzoate, 2,3-dihydroxybenzoate, 2,4-dihydroxybenzoate, 2,5-dihydroxybenzoate, 2,3,4-trihydroxybenzoate, 3,4,5-trihydroxybenzoate, 3-F-4-hydroxybenzoate, or vanillate. The decarboxylase activity was inhibited by 25 and 20%, respectively, by 2,3,4- and 3,4,5-trihydroxybenzoate. Thiamine PPi and pyridoxal 5'-phosphate did not stimulate and hydroxylamine and sodium borohydride did not inhibit the enzyme activity, indicating that the 3,4-dihydroxybenzoate decarboxylase is not a thiamine PPi-, pyridoxal 5'-phosphate-, or pyruvoyl-dependent enzyme.

Full Text

The Full Text of this article is available as a PDF (322.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson J. J., Dagley S. Catabolism of tryptophan, anthranilate, and 2,3-dihydroxybenzoate in Trichosporon cutaneum. J Bacteriol. 1981 Apr;146(1):291–297. doi: 10.1128/jb.146.1.291-297.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brackmann R., Fuchs G. Enzymes of anaerobic metabolism of phenolic compounds. 4-Hydroxybenzoyl-CoA reductase (dehydroxylating) from a denitrifying Pseudomonas species. Eur J Biochem. 1993 Apr 1;213(1):563–571. doi: 10.1111/j.1432-1033.1993.tb17795.x. [DOI] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  4. Genthner B. R., Townsend G. T., Chapman P. J. para-hydroxybenzoate as an intermediate in the anaerobic transformation of phenol to benzoate. FEMS Microbiol Lett. 1991 Mar 1;62(2-3):265–269. doi: 10.1016/0378-1097(91)90168-a. [DOI] [PubMed] [Google Scholar]
  5. Gorny N., Schink B. Anaerobic degradation of catechol by Desulfobacterium sp. strain Cat2 proceeds via carboxylation to protocatechuate. Appl Environ Microbiol. 1994 Sep;60(9):3396–3400. doi: 10.1128/aem.60.9.3396-3400.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Haddock J. D., Ferry J. G. Initial steps in the anaerobic degradation of 3,4,5-trihydroxybenzoate by Eubacterium oxidoreducens: characterization of mutants and role of 1,2,3,5-tetrahydroxybenzene. J Bacteriol. 1993 Feb;175(3):669–673. doi: 10.1128/jb.175.3.669-673.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. He Z., Wiegel J. Purification and characterization of an oxygen-sensitive reversible 4-hydroxybenzoate decarboxylase from Clostridium hydroxybenzoicum. Eur J Biochem. 1995 Apr 1;229(1):77–82. doi: 10.1111/j.1432-1033.1995.tb20440.x. [DOI] [PubMed] [Google Scholar]
  8. Hsu T. D., Lux M. F., Drake H. L. Expression of an aromatic-dependent decarboxylase which provides growth-essential CO2 equivalents for the acetogenic (Wood) pathway of Clostridium thermoaceticum. J Bacteriol. 1990 Oct;172(10):5901–5907. doi: 10.1128/jb.172.10.5901-5907.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kamath A. V., Dasgupta D., Vaidyanathan C. S. Enzyme-catalysed non-oxidative decarboxylation of aromatic acids: I. Purification and spectroscopic properties of 2,3 dihydroxybenzoic acid decarboxylase from Aspergillus niger. Biochem Biophys Res Commun. 1987 May 29;145(1):586–595. doi: 10.1016/0006-291x(87)91361-1. [DOI] [PubMed] [Google Scholar]
  10. Kamath A. V., Rao N. A., Vaidyanathan C. S. Enzyme catalysed non-oxidative decarboxylation of aromatic acids. II. Identification of active site residues of 2,3-dihydroxybenzoic acid decarboxylase from Aspergillus niger. Biochem Biophys Res Commun. 1989 Nov 30;165(1):20–26. doi: 10.1016/0006-291x(89)91028-0. [DOI] [PubMed] [Google Scholar]
  11. Kamath A. V., Vaidyanathan C. S. New pathway for the biodegradation of indole in Aspergillus niger. Appl Environ Microbiol. 1990 Jan;56(1):275–280. doi: 10.1128/aem.56.1.275-280.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lack A., Fuchs G. Carboxylation of phenylphosphate by phenol carboxylase, an enzyme system of anaerobic phenol metabolism. J Bacteriol. 1992 Jun;174(11):3629–3636. doi: 10.1128/jb.174.11.3629-3636.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Leppik R. A., Young I. G., Gibson F. Membrane-associated reactions in ubiquinone biosynthesis in Escherichia coli. 3-Octaprenyl-4-hydroxybenzoate carboxy-lyase. Biochim Biophys Acta. 1976 Jul 15;436(4):800–810. doi: 10.1016/0005-2736(76)90407-7. [DOI] [PubMed] [Google Scholar]
  14. Nakazawa T., Hayashi E. Phthalate and 4-hydroxyphthalate metabolism in Pseudomonas testosteroni: purification and properties of 4,5-dihydroxyphthalate decarboxylase. Appl Environ Microbiol. 1978 Aug;36(2):264–269. doi: 10.1128/aem.36.2.264-269.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Patel J. C., Grant D. J. The formation of phenol in the degradation of p-hydroxybenzoic acid by Klebsiella aerogenes (Aerobacter aerogenes). Antonie Van Leeuwenhoek. 1969;35(1):53–64. doi: 10.1007/BF02219116. [DOI] [PubMed] [Google Scholar]
  16. Pujar B. G., Ribbons D. W. Phthalate metabolism in Pseudomonas fluorescens PHK: purification and properties of 4,5-dihydroxyphthalate decarboxylase. Appl Environ Microbiol. 1985 Feb;49(2):374–376. doi: 10.1128/aem.49.2.374-376.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Zhang X., Mandelco L., Wiegel J. Clostridium hydroxybenzoicum sp. nov., an amino acid-utilizing, hydroxybenzoate-decarboxylating bacterium isolated from methanogenic freshwater pond sediment. Int J Syst Bacteriol. 1994 Apr;44(2):214–222. doi: 10.1099/00207713-44-2-214. [DOI] [PubMed] [Google Scholar]
  18. Zhang X., Wiegel J. Reversible Conversion of 4-Hydroxybenzoate and Phenol by Clostridium hydroxybenzoicum. Appl Environ Microbiol. 1994 Nov;60(11):4182–4185. doi: 10.1128/aem.60.11.4182-4185.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Zhang X., Wiegel J. Sequential anaerobic degradation of 2,4-dichlorophenol in freshwater sediments. Appl Environ Microbiol. 1990 Apr;56(4):1119–1127. doi: 10.1128/aem.56.4.1119-1127.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Zhang X., Wiegel J. The anaerobic degradation of 3-chloro-4-hydroxybenzoate in freshwater sediment proceeds via either chlorophenol or hydroxybenzoate to phenol and subsequently to benzoate. Appl Environ Microbiol. 1992 Nov;58(11):3580–3585. doi: 10.1128/aem.58.11.3580-3585.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES