Abstract
A 3,4-dihydroxybenzoate decarboxylase (EC 4.1.1.63) from Clostridium hydroxybenzoicum JW/Z-1T was purified and partially characterized. The estimated molecular mass of the enzyme was 270 kDa. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis gave a single band of 57 kDa, suggesting that the enzyme consists of five identical subunits. The temperature and pH optima were 50 degrees C and pH 7.0, respectively. The Arrhenius energy for decarboxylation of 3,4-dihydroxybenzoate was 32.5 kJ . mol(-1) for the temperature range from 22 to 50 degrees C. The Km and kcat for 3,4-dihydroxybenzoate were 0.6 mM and 5.4 x 10(3) min(-1), respectively, at pH 7.0 and 25 degrees C. The enzyme optimally catalyzed the reverse reaction, that is, the carboxylation of catechol to 3,4-dihydroxybenzoate, at pH 7.0. The enzyme did not decarboxylate 2-hydroxybenzoate, 3-hydroxybenzoate, 4-hydroxybenzoate, 2,3-dihydroxybenzoate, 2,4-dihydroxybenzoate, 2,5-dihydroxybenzoate, 2,3,4-trihydroxybenzoate, 3,4,5-trihydroxybenzoate, 3-F-4-hydroxybenzoate, or vanillate. The decarboxylase activity was inhibited by 25 and 20%, respectively, by 2,3,4- and 3,4,5-trihydroxybenzoate. Thiamine PPi and pyridoxal 5'-phosphate did not stimulate and hydroxylamine and sodium borohydride did not inhibit the enzyme activity, indicating that the 3,4-dihydroxybenzoate decarboxylase is not a thiamine PPi-, pyridoxal 5'-phosphate-, or pyruvoyl-dependent enzyme.
Full Text
The Full Text of this article is available as a PDF (322.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson J. J., Dagley S. Catabolism of tryptophan, anthranilate, and 2,3-dihydroxybenzoate in Trichosporon cutaneum. J Bacteriol. 1981 Apr;146(1):291–297. doi: 10.1128/jb.146.1.291-297.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brackmann R., Fuchs G. Enzymes of anaerobic metabolism of phenolic compounds. 4-Hydroxybenzoyl-CoA reductase (dehydroxylating) from a denitrifying Pseudomonas species. Eur J Biochem. 1993 Apr 1;213(1):563–571. doi: 10.1111/j.1432-1033.1993.tb17795.x. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Genthner B. R., Townsend G. T., Chapman P. J. para-hydroxybenzoate as an intermediate in the anaerobic transformation of phenol to benzoate. FEMS Microbiol Lett. 1991 Mar 1;62(2-3):265–269. doi: 10.1016/0378-1097(91)90168-a. [DOI] [PubMed] [Google Scholar]
- Gorny N., Schink B. Anaerobic degradation of catechol by Desulfobacterium sp. strain Cat2 proceeds via carboxylation to protocatechuate. Appl Environ Microbiol. 1994 Sep;60(9):3396–3400. doi: 10.1128/aem.60.9.3396-3400.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haddock J. D., Ferry J. G. Initial steps in the anaerobic degradation of 3,4,5-trihydroxybenzoate by Eubacterium oxidoreducens: characterization of mutants and role of 1,2,3,5-tetrahydroxybenzene. J Bacteriol. 1993 Feb;175(3):669–673. doi: 10.1128/jb.175.3.669-673.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- He Z., Wiegel J. Purification and characterization of an oxygen-sensitive reversible 4-hydroxybenzoate decarboxylase from Clostridium hydroxybenzoicum. Eur J Biochem. 1995 Apr 1;229(1):77–82. doi: 10.1111/j.1432-1033.1995.tb20440.x. [DOI] [PubMed] [Google Scholar]
- Hsu T. D., Lux M. F., Drake H. L. Expression of an aromatic-dependent decarboxylase which provides growth-essential CO2 equivalents for the acetogenic (Wood) pathway of Clostridium thermoaceticum. J Bacteriol. 1990 Oct;172(10):5901–5907. doi: 10.1128/jb.172.10.5901-5907.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kamath A. V., Dasgupta D., Vaidyanathan C. S. Enzyme-catalysed non-oxidative decarboxylation of aromatic acids: I. Purification and spectroscopic properties of 2,3 dihydroxybenzoic acid decarboxylase from Aspergillus niger. Biochem Biophys Res Commun. 1987 May 29;145(1):586–595. doi: 10.1016/0006-291x(87)91361-1. [DOI] [PubMed] [Google Scholar]
- Kamath A. V., Rao N. A., Vaidyanathan C. S. Enzyme catalysed non-oxidative decarboxylation of aromatic acids. II. Identification of active site residues of 2,3-dihydroxybenzoic acid decarboxylase from Aspergillus niger. Biochem Biophys Res Commun. 1989 Nov 30;165(1):20–26. doi: 10.1016/0006-291x(89)91028-0. [DOI] [PubMed] [Google Scholar]
- Kamath A. V., Vaidyanathan C. S. New pathway for the biodegradation of indole in Aspergillus niger. Appl Environ Microbiol. 1990 Jan;56(1):275–280. doi: 10.1128/aem.56.1.275-280.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lack A., Fuchs G. Carboxylation of phenylphosphate by phenol carboxylase, an enzyme system of anaerobic phenol metabolism. J Bacteriol. 1992 Jun;174(11):3629–3636. doi: 10.1128/jb.174.11.3629-3636.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leppik R. A., Young I. G., Gibson F. Membrane-associated reactions in ubiquinone biosynthesis in Escherichia coli. 3-Octaprenyl-4-hydroxybenzoate carboxy-lyase. Biochim Biophys Acta. 1976 Jul 15;436(4):800–810. doi: 10.1016/0005-2736(76)90407-7. [DOI] [PubMed] [Google Scholar]
- Nakazawa T., Hayashi E. Phthalate and 4-hydroxyphthalate metabolism in Pseudomonas testosteroni: purification and properties of 4,5-dihydroxyphthalate decarboxylase. Appl Environ Microbiol. 1978 Aug;36(2):264–269. doi: 10.1128/aem.36.2.264-269.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Patel J. C., Grant D. J. The formation of phenol in the degradation of p-hydroxybenzoic acid by Klebsiella aerogenes (Aerobacter aerogenes). Antonie Van Leeuwenhoek. 1969;35(1):53–64. doi: 10.1007/BF02219116. [DOI] [PubMed] [Google Scholar]
- Pujar B. G., Ribbons D. W. Phthalate metabolism in Pseudomonas fluorescens PHK: purification and properties of 4,5-dihydroxyphthalate decarboxylase. Appl Environ Microbiol. 1985 Feb;49(2):374–376. doi: 10.1128/aem.49.2.374-376.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang X., Mandelco L., Wiegel J. Clostridium hydroxybenzoicum sp. nov., an amino acid-utilizing, hydroxybenzoate-decarboxylating bacterium isolated from methanogenic freshwater pond sediment. Int J Syst Bacteriol. 1994 Apr;44(2):214–222. doi: 10.1099/00207713-44-2-214. [DOI] [PubMed] [Google Scholar]
- Zhang X., Wiegel J. Reversible Conversion of 4-Hydroxybenzoate and Phenol by Clostridium hydroxybenzoicum. Appl Environ Microbiol. 1994 Nov;60(11):4182–4185. doi: 10.1128/aem.60.11.4182-4185.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang X., Wiegel J. Sequential anaerobic degradation of 2,4-dichlorophenol in freshwater sediments. Appl Environ Microbiol. 1990 Apr;56(4):1119–1127. doi: 10.1128/aem.56.4.1119-1127.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang X., Wiegel J. The anaerobic degradation of 3-chloro-4-hydroxybenzoate in freshwater sediment proceeds via either chlorophenol or hydroxybenzoate to phenol and subsequently to benzoate. Appl Environ Microbiol. 1992 Nov;58(11):3580–3585. doi: 10.1128/aem.58.11.3580-3585.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]