Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Jun;178(12):3621–3627. doi: 10.1128/jb.178.12.3621-3627.1996

Modulation of development, growth dynamics, wall crystallinity, and infection sites in white clover root hairs by membrane chitolipooligosaccharides from Rhizobium leguminosarum biovar trifolii.

F B Dazzo 1, G G Orgambide 1, S Philip-Hollingsworth 1, R I Hollingsworth 1, K O Ninke 1, J L Salzwedel 1
PMCID: PMC178135  PMID: 8655563

Abstract

We used bright-field, time-lapse video, cross-polarized, phase-contrast, and fluorescence microscopies to examine the influence of isolated chitolipooligosaccharides (CLOSs) from wild-type Rhizobium leguminosarum bv. trifolii on development of white clover root hairs, and the role of these bioactive glycolipids in primary host infection. CLOS action caused a threefold increase in the differentiation of root epidermal cells into root hairs. At maturity, root hairs were significantly longer because of an extended period of active elongation without a change in the elongation rate itself. Time-series image analysis showed that the morphological basis of CLOS-induced root hair deformation is a redirection of tip growth displaced from the medial axis as previously predicted. Further studies showed several newly described infection-related root hair responses to CLOSs, including the localized disruption of the normal crystallinity in cell wall architecture and the induction of new infection sites. The application of CLOS also enabled a NodC- mutant of R. leguminosarum bv. trifolii to progress further in the infection process by inducing bright refractile spot modifications of the deformed root hair walls. However, CLOSs did not rescue the ability of the NodC- mutant to induce marked curlings or infection threads within root hairs. These results indicate that CLOS Nod factors elicit several host responses that modulate the growth dynamics and symbiont infectibility of white clover root hairs but that CLOSs alone are not sufficient to permit successful entry of the bacteria into root hairs during primary host infection in the Rhizobium-clover symbiosis.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Carlson R. W., Price N. P., Stacey G. The biosynthesis of rhizobial lipo-oligosaccharide nodulation signal molecules. Mol Plant Microbe Interact. 1994 Nov-Dec;7(6):684–695. doi: 10.1094/mpmi-7-0684. [DOI] [PubMed] [Google Scholar]
  2. Cedergren R. A., Lee J., Ross K. L., Hollingsworth R. I. Common links in the structure and cellular localization of Rhizobium chitolipooligosaccharides and general Rhizobium membrane phospholipid and glycolipid components. Biochemistry. 1995 Apr 4;34(13):4467–4477. doi: 10.1021/bi00013a040. [DOI] [PubMed] [Google Scholar]
  3. Cosgrove D. J. How do plant cell walls extend? Plant Physiol. 1993 May;102(1):1–6. doi: 10.1104/pp.102.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dazzo F. B., Truchet G. L., Hollingsworth R. I., Hrabak E. M., Pankratz H. S., Philip-Hollingsworth S., Salzwedel J. L., Chapman K., Appenzeller L., Squartini A. Rhizobium lipopolysaccharide modulates infection thread development in white clover root hairs. J Bacteriol. 1991 Sep;173(17):5371–5384. doi: 10.1128/jb.173.17.5371-5384.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ehrhardt D. W., Atkinson E. M., Long S. R. Depolarization of alfalfa root hair membrane potential by Rhizobium meliloti Nod factors. Science. 1992 May 15;256(5059):998–1000. doi: 10.1126/science.10744524. [DOI] [PubMed] [Google Scholar]
  6. Fry S. C., Smith R. C., Renwick K. F., Martin D. J., Hodge S. K., Matthews K. J. Xyloglucan endotransglycosylase, a new wall-loosening enzyme activity from plants. Biochem J. 1992 Mar 15;282(Pt 3):821–828. doi: 10.1042/bj2820821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Heidstra R., Geurts R., Franssen H., Spaink H. P., Van Kammen A., Bisseling T. Root Hair Deformation Activity of Nodulation Factors and Their Fate on Vicia sativa. Plant Physiol. 1994 Jul;105(3):787–797. doi: 10.1104/pp.105.3.787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hirsch A. M., Fang Y. Plant hormones and nodulation: what's the connection? Plant Mol Biol. 1994 Oct;26(1):5–9. doi: 10.1007/BF00039514. [DOI] [PubMed] [Google Scholar]
  9. Horvath B., Heidstra R., Lados M., Moerman M., Spaink H. P., Promé J. C., van Kammen A., Bisseling T. Lipo-oligosaccharides of Rhizobium induce infection-related early nodulin gene expression in pea root hairs. Plant J. 1993 Oct;4(4):727–733. doi: 10.1046/j.1365-313x.1993.04040727.x. [DOI] [PubMed] [Google Scholar]
  10. Lerouge P., Roche P., Faucher C., Maillet F., Truchet G., Promé J. C., Dénarié J. Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal. Nature. 1990 Apr 19;344(6268):781–784. doi: 10.1038/344781a0. [DOI] [PubMed] [Google Scholar]
  11. Li D., Hubbell D. H. Infection thread formation as a basis of nodulation specificity in Rhizobium--strawberry clover associations. Can J Microbiol. 1969 Oct;15(10):1133–1136. doi: 10.1139/m69-206. [DOI] [PubMed] [Google Scholar]
  12. Mateos P. F., Jimenez-Zurdo J. I., Chen J., Squartini A. S., Haack S. K., Martinez-Molina E., Hubbell D. H., Dazzo F. B. Cell-associated pectinolytic and cellulolytic enzymes in Rhizobium leguminosarum biovar trifolii. Appl Environ Microbiol. 1992 Jun;58(6):1816–1822. doi: 10.1128/aem.58.6.1816-1822.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Orgambide G. G., Lee J., Hollingsworth R. I., Dazzo F. B. Structurally diverse chitolipooligosaccharide nod factors accumulate primarily in membranes of wild type Rhizobium leguminosarum biovar trifolii. Biochemistry. 1995 Mar 21;34(11):3832–3840. doi: 10.1021/bi00011a041. [DOI] [PubMed] [Google Scholar]
  14. Philip-Hollingsworth S., Orgambide G. G., Bradford J. J., Smith D. K., Hollingsworth R. I., Dazzo F. B. Mutation or increased copy number of nodE has no effect on the spectrum of chitolipooligosaccharide nod factors made by Rhizobium leguminosarum bv. trifolii. J Biol Chem. 1995 Sep 8;270(36):20968–20977. doi: 10.1074/jbc.270.36.20968. [DOI] [PubMed] [Google Scholar]
  15. Relić B., Talmont F., Kopcinska J., Golinowski W., Promé J. C., Broughton W. J. Biological activity of Rhizobium sp. NGR234 Nod-factors on Macroptilium atropurpureum. Mol Plant Microbe Interact. 1993 Nov-Dec;6(6):764–774. doi: 10.1094/mpmi-6-764. [DOI] [PubMed] [Google Scholar]
  16. Roberts K. The plant extracellular matrix: in a new expansive mood. Curr Opin Cell Biol. 1994 Oct;6(5):688–694. doi: 10.1016/0955-0674(94)90095-7. [DOI] [PubMed] [Google Scholar]
  17. Salzwedel J. L., Dazzo F. B. pSym nod gene influence on elicitation of peroxidase activity from white clover and pea roots by rhizobia and their cell-free supernatants. Mol Plant Microbe Interact. 1993 Jan-Feb;6(1):127–134. doi: 10.1094/mpmi-6-127. [DOI] [PubMed] [Google Scholar]
  18. van Brussel A. A., Bakhuizen R., van Spronsen P. C., Spaink H. P., Tak T., Lugtenberg B. J., Kijne J. W. Induction of pre-infection thread structures in the leguminous host plant by mitogenic lipo-oligosaccharides of Rhizobium. Science. 1992 Jul 3;257(5066):70–72. doi: 10.1126/science.257.5066.70. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES