Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Jun;178(12):3628–3633. doi: 10.1128/jb.178.12.3628-3633.1996

Transposon mutagenesis affecting thiosulfate oxidation in Bosea thiooxidans, a new chemolithoheterotrophic bacterium.

S K Das 1, A K Mishra 1
PMCID: PMC178136  PMID: 8655564

Abstract

Transposon insertion mutagenesis was used to isolate mutants of Bosea thiooxidans which are impaired in thiosulfate oxidation. Suicide plasmid pSUP5011 was used to introduce the transposon Tn5 into B. thiooxidans via Escherichia coli S17.1-mediated conjugation. Neomycin-resistant transconjugants occurred at a frequency of 2.2 X 10(-4) per donor. Transconjugants defective in thiosulfate oxidation were categorized into three classes on the basis of growth response, enzyme activities, and cytochrome patterns. Class I mutants were deficient in cytochrome c, and no thiosulfate oxidase activity was detected. Class II mutants retained the activities of key enzymes of thiosulfate metabolism, although at reduced levels. Mutants of this class grown on mixed-substrate agar plates deposited elemental sulfur on the colony surfaces. Class III mutants were unable to utilize thiosulfate, though they had normal levels of cytochrome c. The transposon insertions occurred at different chromosomal positions, as confirmed by Southern blotting of chromosomal DNA of mutants deficient in thiosulfate oxidation, a deficiency which resulted from single insertions of Tn5.

Full Text

The Full Text of this article is available as a PDF (350.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berg D. E., Weiss A., Crossland L. Polarity of Tn5 insertion mutations in Escherichia coli. J Bacteriol. 1980 May;142(2):439–446. doi: 10.1128/jb.142.2.439-446.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Biek D., Roth J. R. Regulation of Tn5 transposition in Salmonella typhimurium. Proc Natl Acad Sci U S A. 1980 Oct;77(10):6047–6051. doi: 10.1073/pnas.77.10.6047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chandra T. S., Friedrich C. G. Tn5-induced mutations affecting sulfur-oxidizing ability (Sox) of Thiosphaera pantotropha. J Bacteriol. 1986 May;166(2):446–452. doi: 10.1128/jb.166.2.446-452.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Davidson M. S., Roy P., Summers A. O. Transpositional Mutagenesis of Thiobacillus novellus and Thiobacillus versutus. Appl Environ Microbiol. 1985 Jun;49(6):1436–1441. doi: 10.1128/aem.49.6.1436-1441.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. FRIDOVICH I., HANDLER P. Detection of free radicals generated during enzymic oxidations by the initiation of sulfite oxidation. J Biol Chem. 1961 Jun;236:1836–1840. [PubMed] [Google Scholar]
  6. GLEEN H., QUASTEL J. H. Sulphur metabolism in soil. Appl Microbiol. 1953 Mar;1(2):70–77. doi: 10.1128/am.1.2.70-77.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kleckner N., Roth J., Botstein D. Genetic engineering in vivo using translocatable drug-resistance elements. New methods in bacterial genetics. J Mol Biol. 1977 Oct 15;116(1):125–159. doi: 10.1016/0022-2836(77)90123-1. [DOI] [PubMed] [Google Scholar]
  8. Kuenen J. G., Veldkamp H. Thiomicrospira pelophila, gen. n., sp. n., a new obligately chemolithotrophic colourless sulfur bacterium. Antonie Van Leeuwenhoek. 1972;38(3):241–256. doi: 10.1007/BF02328096. [DOI] [PubMed] [Google Scholar]
  9. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  10. Larkin J. M., Strohl W. R. Beggiatoa, Thiothrix, and Thioploca. Annu Rev Microbiol. 1983;37:341–367. doi: 10.1146/annurev.mi.37.100183.002013. [DOI] [PubMed] [Google Scholar]
  11. Laue B. E., Nelson D. C. Characterization of the gene encoding the autotrophic ATP sulfurylase from the bacterial endosymbiont of the hydrothermal vent tubeworm Riftia pachyptila. J Bacteriol. 1994 Jun;176(12):3723–3729. doi: 10.1128/jb.176.12.3723-3729.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. MACLEOD R. M., FARKAS W., FRIDOVICH I., HANDLER P. Purification and properties of hepatic sulfite oxidase. J Biol Chem. 1961 Jun;236:1841–1846. [PubMed] [Google Scholar]
  13. Merrick M., Filser M., Kennedy C., Dixon R. Polarity of mutations induced by insertion of transposons Tn5, Tn7 and Tn10 into the nif gene cluster of Klebsiella pneumoniae. Mol Gen Genet. 1978 Sep 20;165(1):103–111. doi: 10.1007/BF00270382. [DOI] [PubMed] [Google Scholar]
  14. Mittenhuber G., Sonomoto K., Egert M., Friedrich C. G. Identification of the DNA region responsible for sulfur-oxidizing ability of Thiosphaera pantotropha. J Bacteriol. 1991 Nov;173(22):7340–7344. doi: 10.1128/jb.173.22.7340-7344.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Nelson D. C., Castenholz R. W. Use of reduced sulfur compounds by Beggiatoa sp. J Bacteriol. 1981 Jul;147(1):140–154. doi: 10.1128/jb.147.1.140-154.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rawlings D. E., Kusano T. Molecular genetics of Thiobacillus ferrooxidans. Microbiol Rev. 1994 Mar;58(1):39–55. doi: 10.1128/mr.58.1.39-55.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Schook L. B., Berk R. S. Nutritional studies with Pseudomonas aeruginosa grown on inorganic sulfur sources. J Bacteriol. 1978 Mar;133(3):1378–1382. doi: 10.1128/jb.133.3.1378-1382.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Shaw K. J., Berg C. M. Escherichia coli K-12 auxotrophs induced by insertion of the transposable element Tn5. Genetics. 1979 Jul;92(3):741–747. doi: 10.1093/genetics/92.3.741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Simon R. High frequency mobilization of gram-negative bacterial replicons by the in vitro constructed Tn5-Mob transposon. Mol Gen Genet. 1984;196(3):413–420. doi: 10.1007/BF00436188. [DOI] [PubMed] [Google Scholar]
  20. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  21. Suzuki I. Mechanisms of inorganic oxidation and energy coupling. Annu Rev Microbiol. 1974;28(0):85–101. doi: 10.1146/annurev.mi.28.100174.000505. [DOI] [PubMed] [Google Scholar]
  22. Sweet W. J., Peterson J. A. Changes in cytochrome content and electron transport patterns in Pseudomonas putida as a function of growth phase. J Bacteriol. 1978 Jan;133(1):217–224. doi: 10.1128/jb.133.1.217-224.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. TEMPLE K. L., COLMER A. R. The autotrophic oxidation of iron by a new bacterium, thiobacillus ferrooxidans. J Bacteriol. 1951 Nov;62(5):605–611. doi: 10.1128/jb.62.5.605-611.1951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. TRUDINGER P. A. Thiosulphate oxidation and cytochromes in Thiobacillus X. 2. Thiosulphate-oxidizing enzyme. Biochem J. 1961 Apr;78:680–686. doi: 10.1042/bj0780680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Tabita R., Silver M., Lundgren D. G. The rhodanese enzyme of Ferrobacillus ferrooxidans (Thiobacillus ferrooxidans). Can J Biochem. 1969 Dec;47(12):1141–1145. doi: 10.1139/o69-184. [DOI] [PubMed] [Google Scholar]
  26. Taylor B. F., Hoare D. S. New facultative Thiobacillus and a reevaluation of the heterotrophic potential of Thiobacillus novellus. J Bacteriol. 1969 Oct;100(1):487–497. doi: 10.1128/jb.100.1.487-497.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Thomson J. A., Hendson M., Magnes R. M. Mutagenesis by insertion of drug resistance transposon Tn7 into a vibrio species. J Bacteriol. 1981 Oct;148(1):374–378. doi: 10.1128/jb.148.1.374-378.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Trudinger P. A. Metabolism of thiosulfate and tetrathionate by heterotrophic bacteria from soil. J Bacteriol. 1967 Feb;93(2):550–559. doi: 10.1128/jb.93.2.550-559.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Wodara C., Kostka S., Egert M., Kelly D. P., Friedrich C. G. Identification and sequence analysis of the soxB gene essential for sulfur oxidation of Paracoccus denitrificans GB17. J Bacteriol. 1994 Oct;176(20):6188–6191. doi: 10.1128/jb.176.20.6188-6191.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES