Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Jul;178(13):3677–3682. doi: 10.1128/jb.178.13.3677-3682.1996

Calcium signalling in bacteria.

V Norris 1, S Grant 1, P Freestone 1, J Canvin 1, F N Sheikh 1, I Toth 1, M Trinei 1, K Modha 1, R I Norman 1
PMCID: PMC178146  PMID: 8682765

Full Text

The Full Text of this article is available as a PDF (227.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berkelman T., Garret-Engele P., Hoffman N. E. The pacL gene of Synechococcus sp. strain PCC 7942 encodes a Ca(2+)-transporting ATPase. J Bacteriol. 1994 Jul;176(14):4430–4436. doi: 10.1128/jb.176.14.4430-4436.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Braunlin W. H., Drakenberg T., Nordenskiöld L. Ca2+ binding environments on natural and synthetic polymeric DNA's. J Biomol Struct Dyn. 1992 Oct;10(2):333–343. doi: 10.1080/07391102.1992.10508651. [DOI] [PubMed] [Google Scholar]
  3. Brukner I., Susic S., Dlakic M., Savic A., Pongor S. Physiological concentration of magnesium ions induces a strong macroscopic curvature in GGGCCC-containing DNA. J Mol Biol. 1994 Feb 11;236(1):26–32. doi: 10.1006/jmbi.1994.1115. [DOI] [PubMed] [Google Scholar]
  4. Bukau B., Walker G. C. Delta dnaK52 mutants of Escherichia coli have defects in chromosome segregation and plasmid maintenance at normal growth temperatures. J Bacteriol. 1989 Nov;171(11):6030–6038. doi: 10.1128/jb.171.11.6030-6038.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Burland V., Plunkett G., 3rd, Sofia H. J., Daniels D. L., Blattner F. R. Analysis of the Escherichia coli genome VI: DNA sequence of the region from 92.8 through 100 minutes. Nucleic Acids Res. 1995 Jun 25;23(12):2105–2119. doi: 10.1093/nar/23.12.2105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bylsma N., Drakenberg T., Andersson I., Leadlay P. F., Forsén S. Prokaryotic calcium-binding protein of the calmodulin superfamily. Calcium binding to a Saccharopolyspora erythraea 20 kDa protein. FEBS Lett. 1992 Mar 24;299(1):44–47. doi: 10.1016/0014-5793(92)80096-y. [DOI] [PubMed] [Google Scholar]
  7. Carafoli E. Intracellular calcium homeostasis. Annu Rev Biochem. 1987;56:395–433. doi: 10.1146/annurev.bi.56.070187.002143. [DOI] [PubMed] [Google Scholar]
  8. Casaregola S., Chen M., Bouquin N., Norris V., Jacq A., Goldberg M., Margarson S., Tempete M., Mckenna S., Sweetman H. Analysis of a myosin-like protein and the role of calcium in the E. coli cell cycle. Res Microbiol. 1991 Feb-Apr;142(2-3):201–207. doi: 10.1016/0923-2508(91)90031-5. [DOI] [PubMed] [Google Scholar]
  9. Castuma C. E., Huang R., Kornberg A., Reusch R. N. Inorganic polyphosphates in the acquisition of competence in Escherichia coli. J Biol Chem. 1995 Jun 2;270(22):12980–12983. doi: 10.1074/jbc.270.22.12980. [DOI] [PubMed] [Google Scholar]
  10. Chang B. Y., White D. Cell surface modifications induced by calcium ion in the myxobacterium Stigmatella aurantiaca. J Bacteriol. 1992 Sep;174(18):5780–5787. doi: 10.1128/jb.174.18.5780-5787.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Chang C. F., Shuman H., Somlyo A. P. Electron probe analysis, X-ray mapping, and electron energy-loss spectroscopy of calcium, magnesium, and monovalent ions in log-phase and in dividing Escherichia coli B cells. J Bacteriol. 1986 Sep;167(3):935–939. doi: 10.1128/jb.167.3.935-939.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Chen M. X., Bouquin N., Norris V., Casarégola S., Séror S. J., Holland I. B. A single base change in the acceptor stem of tRNA(3Leu) confers resistance upon Escherichia coli to the calmodulin inhibitor, 48/80. EMBO J. 1991 Oct;10(10):3113–3122. doi: 10.1002/j.1460-2075.1991.tb07865.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Cullis P. R., de Kruijff B. Lipid polymorphism and the functional roles of lipids in biological membranes. Biochim Biophys Acta. 1979 Dec 20;559(4):399–420. doi: 10.1016/0304-4157(79)90012-1. [DOI] [PubMed] [Google Scholar]
  14. Danchin A. Why sequence genomes? The Escherichia coli imbroglio. Mol Microbiol. 1995 Oct;18(2):371–376. doi: 10.1111/j.1365-2958.1995.mmi_18020371.x. [DOI] [PubMed] [Google Scholar]
  15. DeChavigny A., Heacock P. N., Dowhan W. Sequence and inactivation of the pss gene of Escherichia coli. Phosphatidylethanolamine may not be essential for cell viability. J Biol Chem. 1991 Mar 15;266(8):5323–5332. [PubMed] [Google Scholar]
  16. Economou A., Hamilton W. D., Johnston A. W., Downie J. A. The Rhizobium nodulation gene nodO encodes a Ca2(+)-binding protein that is exported without N-terminal cleavage and is homologous to haemolysin and related proteins. EMBO J. 1990 Feb;9(2):349–354. doi: 10.1002/j.1460-2075.1990.tb08117.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Freestone P., Grant S., Toth I., Norris V. Identification of phosphoproteins in Escherichia coli. Mol Microbiol. 1995 Feb;15(3):573–580. doi: 10.1111/j.1365-2958.1995.tb02270.x. [DOI] [PubMed] [Google Scholar]
  18. Fry I. J., Becker-Hapak M., Hageman J. H. Purification and properties of an intracellular calmodulinlike protein from Bacillus subtilis cells. J Bacteriol. 1991 Apr;173(8):2506–2513. doi: 10.1128/jb.173.8.2506-2513.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Gambel A. M., Desrosiers M. G., Menick D. R. Characterization of a P-type Ca(2+)-ATPase from Flavobacterium odoratum. J Biol Chem. 1992 Aug 5;267(22):15923–15931. [PubMed] [Google Scholar]
  20. Gangola P., Rosen B. P. Maintenance of intracellular calcium in Escherichia coli. J Biol Chem. 1987 Sep 15;262(26):12570–12574. [PubMed] [Google Scholar]
  21. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  22. Harmon A. C., Prasher D., Cormier M. J. High-affinity calcium-binding proteins in Escherichia coli. Biochem Biophys Res Commun. 1985 Feb 28;127(1):31–36. doi: 10.1016/s0006-291x(85)80121-2. [DOI] [PubMed] [Google Scholar]
  23. Hong S. K., Matsumoto A., Horinouchi S., Beppu T. Effects of protein kinase inhibitors on in vitro protein phosphorylation and cellular differentiation of Streptomyces griseus. Mol Gen Genet. 1993 Jan;236(2-3):347–354. doi: 10.1007/BF00277132. [DOI] [PubMed] [Google Scholar]
  24. Hovi T., Williams S. C., Allison A. C. Divalent cation ionophore A23187 forms lipid soluble complexes with leucine and other amino acids. Nature. 1975 Jul 3;256(5512):70–72. doi: 10.1038/256070a0. [DOI] [PubMed] [Google Scholar]
  25. Huang R., Reusch R. N. Genetic competence in Escherichia coli requires poly-beta-hydroxybutyrate/calcium polyphosphate membrane complexes and certain divalent cations. J Bacteriol. 1995 Jan;177(2):486–490. doi: 10.1128/jb.177.2.486-490.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Hwang D. S., Crooke E., Kornberg A. Aggregated dnaA protein is dissociated and activated for DNA replication by phospholipase or dnaK protein. J Biol Chem. 1990 Nov 5;265(31):19244–19248. [PubMed] [Google Scholar]
  27. Inouye S., Franceschini T., Inouye M. Structural similarities between the development-specific protein S from a gram-negative bacterium, Myxococcus xanthus, and calmodulin. Proc Natl Acad Sci U S A. 1983 Nov;80(22):6829–6833. doi: 10.1073/pnas.80.22.6829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Ivey D. M., Guffanti A. A., Zemsky J., Pinner E., Karpel R., Padan E., Schuldiner S., Krulwich T. A. Cloning and characterization of a putative Ca2+/H+ antiporter gene from Escherichia coli upon functional complementation of Na+/H+ antiporter-deficient strains by the overexpressed gene. J Biol Chem. 1993 May 25;268(15):11296–11303. [PubMed] [Google Scholar]
  29. Iwasa Y., Yonemitsu K., Matsui K., Fukunaga K., Miyamoto E. A heat-stable inhibitor protein for bovine brain cyclic nucleotide phosphodiesterase from Escherichia coli. FEBS Lett. 1981 Jun 15;128(2):311–314. doi: 10.1016/0014-5793(81)80105-6. [DOI] [PubMed] [Google Scholar]
  30. Kanamaru K., Kashiwagi S., Mizuno T. The cyanobacterium, Synechococcus sp. PCC7942, possesses two distinct genes encoding cation-transporting P-type ATPases. FEBS Lett. 1993 Sep 6;330(1):99–104. doi: 10.1016/0014-5793(93)80928-n. [DOI] [PubMed] [Google Scholar]
  31. Killian J. A., Koorengevel M. C., Bouwstra J. A., Gooris G., Dowhan W., de Kruijff B. Effect of divalent cations on lipid organization of cardiolipin isolated from Escherichia coli strain AH930. Biochim Biophys Acta. 1994 Jan 19;1189(2):225–232. doi: 10.1016/0005-2736(94)90069-8. [DOI] [PubMed] [Google Scholar]
  32. Knight M. R., Campbell A. K., Smith S. M., Trewavas A. J. Recombinant aequorin as a probe for cytosolic free Ca2+ in Escherichia coli. FEBS Lett. 1991 May 6;282(2):405–408. doi: 10.1016/0014-5793(91)80524-7. [DOI] [PubMed] [Google Scholar]
  33. Kung F. C., Raymond J., Glaser D. A. Metal ion content of Escherichia coli versus cell age. J Bacteriol. 1976 Jun;126(3):1089–1095. doi: 10.1128/jb.126.3.1089-1095.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Laoudj D., Andersen C. L., Bras A., Goldberg M., Jacq A., Holland I. B. EGTA induces the synthesis in Escherichia coli of three proteins that cross-react with calmodulin antibodies. Mol Microbiol. 1994 Aug;13(3):445–457. doi: 10.1111/j.1365-2958.1994.tb00439.x. [DOI] [PubMed] [Google Scholar]
  35. Long S. R., Staskawicz B. J. Prokaryotic plant parasites. Cell. 1993 Jun 4;73(5):921–935. doi: 10.1016/0092-8674(93)90271-q. [DOI] [PubMed] [Google Scholar]
  36. Maddock J. R., Alley M. R., Shapiro L. Polarized cells, polar actions. J Bacteriol. 1993 Nov;175(22):7125–7129. doi: 10.1128/jb.175.22.7125-7129.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. McCarty J. S., Walker G. C. DnaK as a thermometer: threonine-199 is site of autophosphorylation and is critical for ATPase activity. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9513–9517. doi: 10.1073/pnas.88.21.9513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Munoz-Dorado J., Inouye S., Inouye M. Eukaryotic-like protein serine/threonine kinases in Myxococcus xanthus, a developmental bacterium exhibiting social behavior. J Cell Biochem. 1993 Jan;51(1):29–33. doi: 10.1002/jcb.240510107. [DOI] [PubMed] [Google Scholar]
  39. Nishizuka Y. The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature. 1988 Aug 25;334(6184):661–665. doi: 10.1038/334661a0. [DOI] [PubMed] [Google Scholar]
  40. Norris V. A calcium flux at the termination of replication triggers cell division in Escherichia coli. Hypothesis. Cell Calcium. 1989 Nov-Dec;10(8):511–517. doi: 10.1016/0143-4160(89)90012-2. [DOI] [PubMed] [Google Scholar]
  41. Norris V., Ayala J. A., Begg K., Bouché J. P., Bouloc P., Boye E., Canvin J., Casaregola S., Cozzone A. J., Crooke E. Cell cycle control: prokaryotic solutions to eukaryotic problems? J Theor Biol. 1994 May 21;168(2):227–230. doi: 10.1006/jtbi.1994.1102. [DOI] [PubMed] [Google Scholar]
  42. Norris V., Baldwin T. J., Sweeney S. T., Williams P. H., Leach K. L. A protein kinase C-like activity in Escherichia coli. Mol Microbiol. 1991 Dec;5(12):2977–2981. doi: 10.1111/j.1365-2958.1991.tb01857.x. [DOI] [PubMed] [Google Scholar]
  43. Norris V., Chen M., Goldberg M., Voskuil J., McGurk G., Holland I. B. Calcium in bacteria: a solution to which problem? Mol Microbiol. 1991 Apr;5(4):775–778. doi: 10.1111/j.1365-2958.1991.tb00748.x. [DOI] [PubMed] [Google Scholar]
  44. Norris V., Seror S. J., Casaregola S., Holland I. B. A single calcium flux triggers chromosome replication, segregation and septation in bacteria: a model. J Theor Biol. 1988 Oct 7;134(3):341–350. doi: 10.1016/s0022-5193(88)80065-1. [DOI] [PubMed] [Google Scholar]
  45. Norris V., Turnock G., Sigee D. The Escherichia coli enzoskeleton. Mol Microbiol. 1996 Jan;19(2):197–204. doi: 10.1046/j.1365-2958.1996.373899.x. [DOI] [PubMed] [Google Scholar]
  46. O'Hara M. B., Hageman J. H. Energy and calcium ion dependence of proteolysis during sporulation of Bacillus subtilis cells. J Bacteriol. 1990 Aug;172(8):4161–4170. doi: 10.1128/jb.172.8.4161-4170.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Ohyama T., Igarashi K., Kobayashi H. Physiological role of the chaA gene in sodium and calcium circulations at a high pH in Escherichia coli. J Bacteriol. 1994 Jul;176(14):4311–4315. doi: 10.1128/jb.176.14.4311-4315.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Onek L. A., Smith R. J. Calmodulin and calcium mediated regulation in prokaryotes. J Gen Microbiol. 1992 Jun;138(6):1039–1049. doi: 10.1099/00221287-138-6-1039. [DOI] [PubMed] [Google Scholar]
  49. Onoda T., Oshima A., Fukunaga N., Nakatani A. Effect of Ca2+ and K+ on the intracellular pH of an Escherichia coli L-form. J Gen Microbiol. 1992 Jun;138(6):1265–1270. doi: 10.1099/00221287-138-6-1265. [DOI] [PubMed] [Google Scholar]
  50. Ordal G. W. Calcium ion regulates chemotactic behaviour in bacteria. Nature. 1977 Nov 3;270(5632):66–67. doi: 10.1038/270066a0. [DOI] [PubMed] [Google Scholar]
  51. Rampersaud A., Utsumi R., Delgado J., Forst S. A., Inouye M. Ca2(+)-enhanced phosphorylation of a chimeric protein kinase involved with bacterial signal transduction. J Biol Chem. 1991 Apr 25;266(12):7633–7637. [PubMed] [Google Scholar]
  52. Reusch R. N., Huang R., Bramble L. L. Poly-3-hydroxybutyrate/polyphosphate complexes form voltage-activated Ca2+ channels in the plasma membranes of Escherichia coli. Biophys J. 1995 Sep;69(3):754–766. doi: 10.1016/S0006-3495(95)79958-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Rose R. K., Dibdin G. H., Shellis R. P. A quantitative study of calcium binding and aggregation in selected oral bacteria. J Dent Res. 1993 Jan;72(1):78–84. doi: 10.1177/00220345930720011201. [DOI] [PubMed] [Google Scholar]
  54. Rothärmel T., Wagner G. Isolation and characterization of a calmodulin-like protein from Halobacterium salinarium. J Bacteriol. 1995 Feb;177(3):864–866. doi: 10.1128/jb.177.3.864-866.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Saha A. K., Dowling J. N., Mukhopadhyay N. K., Glew R. H. Demonstration of two protein kinases in extracts of Legionella micdadei. J Gen Microbiol. 1988 May;134(5):1275–1281. doi: 10.1099/00221287-134-5-1275. [DOI] [PubMed] [Google Scholar]
  56. Sakakibara Y. The dnaK gene of Escherichia coli functions in initiation of chromosome replication. J Bacteriol. 1988 Feb;170(2):972–979. doi: 10.1128/jb.170.2.972-979.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Sherman M. Y., Goldberg A. L. Heat shock of Escherichia coli increases binding of dnaK (the hsp70 homolog) to polypeptides by promoting its phosphorylation. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8648–8652. doi: 10.1073/pnas.90.18.8648. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Smith R. J. Calcium and bacteria. Adv Microb Physiol. 1995;37:83–133. doi: 10.1016/s0065-2911(08)60144-7. [DOI] [PubMed] [Google Scholar]
  59. Stevenson M. A., Calderwood S. K. Members of the 70-kilodalton heat shock protein family contain a highly conserved calmodulin-binding domain. Mol Cell Biol. 1990 Mar;10(3):1234–1238. doi: 10.1128/mcb.10.3.1234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Straley S. C., Plano G. V., Skrzypek E., Haddix P. L., Fields K. A. Regulation by Ca2+ in the Yersinia low-Ca2+ response. Mol Microbiol. 1993 Jun;8(6):1005–1010. doi: 10.1111/j.1365-2958.1993.tb01644.x. [DOI] [PubMed] [Google Scholar]
  61. Sturges M. R., Peck L. J. Calcium-dependent inactivation of RNA polymerase III transcription. J Biol Chem. 1994 Feb 25;269(8):5712–5719. [PubMed] [Google Scholar]
  62. Sulpice J. C., Zachowski A., Devaux P. F., Giraud F. Requirement for phosphatidylinositol 4,5-bisphosphate in the Ca(2+)-induced phospholipid redistribution in the human erythrocyte membrane. J Biol Chem. 1994 Mar 4;269(9):6347–6354. [PubMed] [Google Scholar]
  63. Tilly K., Yarmolinsky M. Participation of Escherichia coli heat shock proteins DnaJ, DnaK, and GrpE in P1 plasmid replication. J Bacteriol. 1989 Nov;171(11):6025–6029. doi: 10.1128/jb.171.11.6025-6029.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Tisa L. S., Adler J. Calcium ions are involved in Escherichia coli chemotaxis. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):11804–11808. doi: 10.1073/pnas.89.24.11804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Tisa L. S., Adler J. Chemotactic properties of Escherichia coli mutants having abnormal Ca2+ content. J Bacteriol. 1995 Dec;177(24):7112–7118. doi: 10.1128/jb.177.24.7112-7118.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Tisa L. S., Adler J. Cytoplasmic free-Ca2+ level rises with repellents and falls with attractants in Escherichia coli chemotaxis. Proc Natl Acad Sci U S A. 1995 Nov 7;92(23):10777–10781. doi: 10.1073/pnas.92.23.10777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Tisa L. S., Olivera B. M., Adler J. Inhibition of Escherichia coli chemotaxis by omega-conotoxin, a calcium ion channel blocker. J Bacteriol. 1993 Mar;175(5):1235–1238. doi: 10.1128/jb.175.5.1235-1238.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Tocanne J. F., Cézanne L., Lopez A., Piknova B., Schram V., Tournier J. F., Welby M. Lipid domains and lipid/protein interactions in biological membranes. Chem Phys Lipids. 1994 Sep 6;73(1-2):139–158. doi: 10.1016/0009-3084(94)90179-1. [DOI] [PubMed] [Google Scholar]
  69. Trombe M. C. Characterization of a calcium porter of Streptococcus pneumoniae involved in calcium regulation of growth and competence. J Gen Microbiol. 1993 Mar;139(3):433–439. doi: 10.1099/00221287-139-3-433. [DOI] [PubMed] [Google Scholar]
  70. Trombe M. C., Rieux V., Baille F. Mutations which alter the kinetics of calcium transport alter the regulation of competence in Streptococcus pneumoniae. J Bacteriol. 1994 Apr;176(7):1992–1996. doi: 10.1128/jb.176.7.1992-1996.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Tsien R. W., Tsien R. Y. Calcium channels, stores, and oscillations. Annu Rev Cell Biol. 1990;6:715–760. doi: 10.1146/annurev.cb.06.110190.003435. [DOI] [PubMed] [Google Scholar]
  72. Watkins N. J., Knight M. R., Trewavas A. J., Campbell A. K. Free calcium transients in chemotactic and non-chemotactic strains of Escherichia coli determined by using recombinant aequorin. Biochem J. 1995 Mar 15;306(Pt 3):865–869. doi: 10.1042/bj3060865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Wickner S. H. Three Escherichia coli heat shock proteins are required for P1 plasmid DNA replication: formation of an active complex between E. coli DnaJ protein and the P1 initiator protein. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2690–2694. doi: 10.1073/pnas.87.7.2690. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Youatt J. Calcium and microorganisms. Crit Rev Microbiol. 1993;19(2):83–97. doi: 10.3109/10408419309113524. [DOI] [PubMed] [Google Scholar]
  75. van Veen H. W., Abee T., Kortstee G. J., Konings W. N., Zehnder A. J. Translocation of metal phosphate via the phosphate inorganic transport system of Escherichia coli. Biochemistry. 1994 Feb 22;33(7):1766–1770. doi: 10.1021/bi00173a020. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES