Abstract
BACKGROUND: Chemokine-driven migration of inflammatory cells has been implicated in the pathogenesis of atherosclerotic conditions including peripheral arterial disease (PAD). Monocyte chemoattractant protein-1 (MCP-1) is elevated in patients with coronary artery disease and in hypertensive patients. This study therefore investigated MCP-1 in patients with PAD. METHODS: Serum MCP-1 was determined by enzyme-linked immunosorbent assay in 36 healthy, control subjects and in 19 patients with PAD. Statistical analysis utilised the Mann-Whitney test and Spearman correlation (p < 0.05). RESULTS: MCP-1 (pg/ml) was increased in patients compared with in controls (mean+/-standard error of the mean: PAD group, 748+/-60; control group, 459+/-27; p=0.0001). MCP-1 levels tended to decrease with progressing disease. From atherosclerosis risk factors, diabetes inclined to increase MCP-1 levels; hypertension had no effect. Serum MCP-1 correlated with cholesterol, triglycerides, low-density lipoprotein but not high-density lipoprotein. Conclusion: Elevation of MCP-1 in the circulation of PAD patients shown in the present pilot study implicates this CC chemokine ligand 2 in inflammatory processes contributing to PAD clinical symptomatology. Further investigations are necessary to evaluate whether MCP-1 can be used as a potential marker of peripheral arterial disease follow-up and/or prognosis.
Full Text
The Full Text of this article is available as a PDF (142.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aukrust P., Damås J. K., Gullestad L., Frøland S. S. Chemokines in myocardial failure -- pathogenic importance and potential therapeutic targets. Clin Exp Immunol. 2001 Jun;124(3):343–345. doi: 10.1046/j.1365-2249.2001.01527.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Aukrust P., Ueland T., Müller F., Andreassen A. K., Nordøy I., Aas H., Kjekshus J., Simonsen S., Frøland S. S., Gullestad L. Elevated circulating levels of C-C chemokines in patients with congestive heart failure. Circulation. 1998 Mar 31;97(12):1136–1143. doi: 10.1161/01.cir.97.12.1136. [DOI] [PubMed] [Google Scholar]
- Barretto Simone, Ballman Karla V., Rooke Thom W., Kullo Iftikhar J. Early-onset peripheral arterial occlusive disease: clinical features and determinants of disease severity and location. Vasc Med. 2003 May;8(2):95–100. doi: 10.1191/1358863x03vm475oa. [DOI] [PubMed] [Google Scholar]
- Brevetti Gregorio, Piscione Federico, Silvestro Antonio, Galasso Gennaro, Di Donato AnnaMaria, Oliva Gabriella, Scopacasa Francesco, Chiariello Massimo. Increased inflammatory status and higher prevalence of three-vessel coronary artery disease in patients with concomitant coronary and peripheral atherosclerosis. Thromb Haemost. 2003 Jun;89(6):1058–1063. [PubMed] [Google Scholar]
- Call D. R., Nemzek J. A., Ebong S. J., Bolgos G. L., Newcomb D. E., Remick D. G. Ratio of local to systemic chemokine concentrations regulates neutrophil recruitment. Am J Pathol. 2001 Feb;158(2):715–721. doi: 10.1016/S0002-9440(10)64014-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Damås J. K., Eiken H. G., Oie E., Bjerkeli V., Yndestad A., Ueland T., Tonnessen T., Geiran O. R., Aass H., Simonsen S. Myocardial expression of CC- and CXC-chemokines and their receptors in human end-stage heart failure. Cardiovasc Res. 2000 Sep;47(4):778–787. doi: 10.1016/s0008-6363(00)00142-5. [DOI] [PubMed] [Google Scholar]
- Dwivedi A., Anggård E. E., Carrier M. J. Oxidized LDL-mediated monocyte adhesion to endothelial cells does not involve NFkappaB. Biochem Biophys Res Commun. 2001 Jun 1;284(1):239–244. doi: 10.1006/bbrc.2001.4955. [DOI] [PubMed] [Google Scholar]
- Fuse K., Kodama M., Hanawa H., Okura Y., Ito M., Shiono T., Maruyama S., Hirono S., Kato K., Watanabe K. Enhanced expression and production of monocyte chemoattractant protein-1 in myocarditis. Clin Exp Immunol. 2001 Jun;124(3):346–352. doi: 10.1046/j.1365-2249.2001.01510.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gerard C., Rollins B. J. Chemokines and disease. Nat Immunol. 2001 Feb;2(2):108–115. doi: 10.1038/84209. [DOI] [PubMed] [Google Scholar]
- Gullestad L., Simonsen S., Ueland T., Holm T., Aass H., Andreassen A. K., Madsen S., Geiran O., Frøland S. S., Aukrust P. Possible role of proinflammatory cytokines in heart allograft coronary artery disease. Am J Cardiol. 1999 Nov 1;84(9):999–1003. doi: 10.1016/s0002-9149(99)00487-7. [DOI] [PubMed] [Google Scholar]
- Jilma-Stohlawetz P., Homoncik M., Drucker C., Marsik C., Rot A., Mayr W. R., Seibold B., Jilma B. Fy phenotype and gender determine plasma levels of monocyte chemotactic protein. Transfusion. 2001 Mar;41(3):378–381. doi: 10.1046/j.1537-2995.2001.41030378.x. [DOI] [PubMed] [Google Scholar]
- Mackay C. R. Chemokines: immunology's high impact factors. Nat Immunol. 2001 Feb;2(2):95–101. doi: 10.1038/84298. [DOI] [PubMed] [Google Scholar]
- Maeno Y., Kashiwagi A., Nishio Y., Takahara N., Kikkawa R. IDL can stimulate atherogenic gene expression in cultured human vascular endothelial cells. Diabetes Res Clin Pract. 2000 May;48(2):127–138. doi: 10.1016/s0168-8227(99)00147-3. [DOI] [PubMed] [Google Scholar]
- Matsui Keiji, Ikeda Uichi, Murakami Yoshiaki, Yoshioka Toru, Shimada Kazuyuki. Intravenous prostaglandin E1 reduces monocyte chemoattractant protein-1 levels in peripheral arterial obstructive disease. Am Heart J. 2003 Feb;145(2):330–333. doi: 10.1067/mhj.2003.145. [DOI] [PubMed] [Google Scholar]
- Matsumori A., Furukawa Y., Hashimoto T., Yoshida A., Ono K., Shioi T., Okada M., Iwasaki A., Nishio R., Matsushima K. Plasma levels of the monocyte chemotactic and activating factor/monocyte chemoattractant protein-1 are elevated in patients with acute myocardial infarction. J Mol Cell Cardiol. 1997 Jan;29(1):419–423. doi: 10.1006/jmcc.1996.0285. [DOI] [PubMed] [Google Scholar]
- McDermott Mary M., Green David, Greenland Philip, Liu Kiang, Criqui Michael H., Chan Cheeling, Guralnik Jack M., Pearce William H., Ridker Paul M., Taylor Lloyd. Relation of levels of hemostatic factors and inflammatory markers to the ankle brachial index. Am J Cardiol. 2003 Jul 15;92(2):194–199. doi: 10.1016/s0002-9149(03)00537-x. [DOI] [PubMed] [Google Scholar]
- Meijer W. T., Hoes A. W., Rutgers D., Bots M. L., Hofman A., Grobbee D. E. Peripheral arterial disease in the elderly: The Rotterdam Study. Arterioscler Thromb Vasc Biol. 1998 Feb;18(2):185–192. doi: 10.1161/01.atv.18.2.185. [DOI] [PubMed] [Google Scholar]
- Ouriel K. Peripheral arterial disease. Lancet. 2001 Oct 13;358(9289):1257–1264. doi: 10.1016/S0140-6736(01)06351-6. [DOI] [PubMed] [Google Scholar]
- Ramírez-Tortosa M. C., Urbano G., López-Jurado M., Nestares T., Gomez M. C., González J., Mir A., Ros E., Mataix J., Gil A. Lifestyle changes in free-living patients with peripheral vascular disease (Fontaine stage II) related to plasma and LDL lipid composition: a 15 month follow-up study. Clin Nutr. 1999 Oct;18(5):281–289. doi: 10.1016/s0261-5614(98)80025-3. [DOI] [PubMed] [Google Scholar]
- Valente A. J., Rozek M. M., Sprague E. A., Schwartz C. J. Mechanisms in intimal monocyte-macrophage recruitment. A special role for monocyte chemotactic protein-1. Circulation. 1992 Dec;86(6 Suppl):III20–III25. [PubMed] [Google Scholar]