Skip to main content
Mediators of Inflammation logoLink to Mediators of Inflammation
. 2004 Jun;13(3):157–164. doi: 10.1080/09511920410001713556

Single dose of inducible nitric oxide synthase inhibitor induces prolonged inflammatory cell accumulation and fibrosis around injured tendon and synovium.

Homa Darmani 1, James C Crossan 1, Adam Curtis 1
PMCID: PMC1781556  PMID: 15223606

Abstract

The aim of the current study was to investigate the effect of inhibition of nitric oxide (NO) production after injury on inflammatory cell accumulation and fibrosis around digital flexor tendon and synovium. A standard crush injury was applied to the flexor tendons of the middle digit of the hindpaw and the overlying muscle and synovium of female Wistar rats. Thirty animals received an intraperitoneal injection of either isotonic saline or N(G)-nitro-l-arginine methyl ester (L-NAME; 5 mg/kg) immediately following the crush injury, and five animals were then sacrificed at various intervals and the paws processed for histology. Another group of five animals was sacrificed after 3 days for nitrite determinations. The results showed that nitrite production and hence NO synthase activity is doubled at the acute phase of tendon wound healing, and we can prevent this by administering a single dose of L-NAME immediately after injury. The incidence and severity of fibrocellular adhesions between tendon and synovium was much more marked in animals treated with L-NAME. Treatment with L-NAME elicited a chronic inflammatory response characterised by a persistent and extraordinarily severe accumulation of large numbers of inflammatory cells in the subcutaneous tissues, in muscle and in tendon. These findings indicate that in the case of injured tendon and synovium, NO could act to protect the healing tissue from an uncontrolled inflammatory response.

Full Text

The Full Text of this article is available as a PDF (704.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albina J. E., Mills C. D., Barbul A., Thirkill C. E., Henry W. L., Jr, Mastrofrancesco B., Caldwell M. D. Arginine metabolism in wounds. Am J Physiol. 1988 Apr;254(4 Pt 1):E459–E467. doi: 10.1152/ajpendo.1988.254.4.E459. [DOI] [PubMed] [Google Scholar]
  2. Beck L. S., DeGuzman L., Lee W. P., Xu Y., Siegel M. W., Amento E. P. One systemic administration of transforming growth factor-beta 1 reverses age- or glucocorticoid-impaired wound healing. J Clin Invest. 1993 Dec;92(6):2841–2849. doi: 10.1172/JCI116904. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Border W. A., Noble N. A. Transforming growth factor beta in tissue fibrosis. N Engl J Med. 1994 Nov 10;331(19):1286–1292. doi: 10.1056/NEJM199411103311907. [DOI] [PubMed] [Google Scholar]
  4. Brahmatewari J., Serafini A., Serralta V., Mertz P. M., Eaglstein W. H. The effects of topical transforming growth factor-beta2 and anti-transforming growth factor-beta2,3 on scarring in pigs. J Cutan Med Surg. 2000 Jul;4(3):126–131. doi: 10.1177/120347540000400303. [DOI] [PubMed] [Google Scholar]
  5. Chang J., Most D., Stelnicki E., Siebert J. W., Longaker M. T., Hui K., Lineaweaver W. C. Gene expression of transforming growth factor beta-1 in rabbit zone II flexor tendon wound healing: evidence for dual mechanisms of repair. Plast Reconstr Surg. 1997 Sep;100(4):937–944. doi: 10.1097/00006534-199709001-00016. [DOI] [PubMed] [Google Scholar]
  6. Chang J., Thunder R., Most D., Longaker M. T., Lineaweaver W. C. Studies in flexor tendon wound healing: neutralizing antibody to TGF-beta1 increases postoperative range of motion. Plast Reconstr Surg. 2000 Jan;105(1):148–155. doi: 10.1097/00006534-200001000-00025. [DOI] [PubMed] [Google Scholar]
  7. Dal Secco Daniela, Paron Juliane Alves, de Oliveira Sandra H. P., Ferreira Sérgio Henrique, Silva João Santana, Cunha Fernando de Queiroz. Neutrophil migration in inflammation: nitric oxide inhibits rolling, adhesion and induces apoptosis. Nitric Oxide. 2003 Nov;9(3):153–164. doi: 10.1016/j.niox.2003.11.001. [DOI] [PubMed] [Google Scholar]
  8. De Caterina R., Libby P., Peng H. B., Thannickal V. J., Rajavashisth T. B., Gimbrone M. A., Jr, Shin W. S., Liao J. K. Nitric oxide decreases cytokine-induced endothelial activation. Nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines. J Clin Invest. 1995 Jul;96(1):60–68. doi: 10.1172/JCI118074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Desmoulière A., Redard M., Darby I., Gabbiani G. Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar. Am J Pathol. 1995 Jan;146(1):56–66. [PMC free article] [PubMed] [Google Scholar]
  10. Ferrini M. G., Vernet D., Magee T. R., Shahed A., Qian A., Rajfer J., Gonzalez-Cadavid N. F. Antifibrotic role of inducible nitric oxide synthase. Nitric Oxide. 2002 May;6(3):283–294. doi: 10.1006/niox.2001.0421. [DOI] [PubMed] [Google Scholar]
  11. Gilbert R. S., Herschman H. R. Transforming growth factor beta differentially modulates the inducible nitric oxide synthase gene in distinct cell types. Biochem Biophys Res Commun. 1993 Aug 31;195(1):380–384. doi: 10.1006/bbrc.1993.2054. [DOI] [PubMed] [Google Scholar]
  12. Hou J., Kato H., Cohen R. A., Chobanian A. V., Brecher P. Angiotensin II-induced cardiac fibrosis in the rat is increased by chronic inhibition of nitric oxide synthase. J Clin Invest. 1995 Nov;96(5):2469–2477. doi: 10.1172/JCI118305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Knowles R. G., Moncada S. Nitric oxide synthases in mammals. Biochem J. 1994 Mar 1;298(Pt 2):249–258. doi: 10.1042/bj2980249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kunz D., Walker G., Pfeilschifter J. Transforming growth factor-beta 2 inhibits interleukin 1 beta-induced expression of inducible nitric oxide synthase in rat renal mesangial cells. Inflamm Res. 1997 Sep;46(9):327–331. doi: 10.1007/s000110050196. [DOI] [PubMed] [Google Scholar]
  15. Lin J. H., Wang M. X., Wei A., Zhu W., Diwan A. D., Murrell G. A. Temporal expression of nitric oxide synthase isoforms in healing Achilles tendon. J Orthop Res. 2001 Jan;19(1):136–142. doi: 10.1016/S0736-0266(00)00019-X. [DOI] [PubMed] [Google Scholar]
  16. Lirk Philipp, Hoffmann Georg, Rieder Josef. Inducible nitric oxide synthase--time for reappraisal. Curr Drug Targets Inflamm Allergy. 2002 Mar;1(1):89–108. doi: 10.2174/1568010023344913. [DOI] [PubMed] [Google Scholar]
  17. Liu P., Yin K., Nagele R., Wong P. Y. Inhibition of nitric oxide synthase attenuates peroxynitrite generation, but augments neutrophil accumulation in hepatic ischemia-reperfusion in rats. J Pharmacol Exp Ther. 1998 Mar;284(3):1139–1146. [PubMed] [Google Scholar]
  18. Miyajima A., Chen J., Lawrence C., Ledbetter S., Soslow R. A., Stern J., Jha S., Pigato J., Lemer M. L., Poppas D. P. Antibody to transforming growth factor-beta ameliorates tubular apoptosis in unilateral ureteral obstruction. Kidney Int. 2000 Dec;58(6):2301–2313. doi: 10.1046/j.1523-1755.2000.00414.x. [DOI] [PubMed] [Google Scholar]
  19. Qasim F. J., Mathieson P. W., Sendo F., Thiru S., Oliveira D. B. Role of neutrophils in the pathogenesis of experimental vasculitis. Am J Pathol. 1996 Jul;149(1):81–89. [PMC free article] [PubMed] [Google Scholar]
  20. Schwentker Ann, Billiar Timothy R. Nitric oxide and wound repair. Surg Clin North Am. 2003 Jun;83(3):521–530. doi: 10.1016/S0039-6109(02)00207-4. [DOI] [PubMed] [Google Scholar]
  21. Shi H. P., Most D., Efron D. T., Tantry U., Fischel M. H., Barbul A. The role of iNOS in wound healing. Surgery. 2001 Aug;130(2):225–229. doi: 10.1067/msy.2001.115837. [DOI] [PubMed] [Google Scholar]

Articles from Mediators of Inflammation are provided here courtesy of Wiley

RESOURCES