Abstract
This study examined the expression of inducible nitric oxide synthase (iNOS) and transforming growth factor-beta (TGF-beta) in macrophage infiltrates within crush-injured digital flexor tendon and synovium of control rats and rats treated with N(G)-nitro-1-arginine methyl ester (L-NAME) (5 mg/kg). Release of TGF-beta from organ cultures of tendon, muscle, and synovium, and the effects of L-NAME treatment (in vitro and in vivo), on adhesion of peritoneal macrophages to epitenon monolayers were also investigated. The results showed that during normal tendon healing the levels of TGF-beta are high at first and gradually decrease after 3 weeks of injury to slightly above control uninjured levels. However, when L-NAME was administered at the time of injury, the macrophage infiltrates were expressing high levels of TGF-beta even at 5 weeks after the injury, with no evidence of reduction. In the standard injury, iNOS activity was greatest at the acute phase of the inflammatory response and then gradually returned to normal. Treatment with L-NAME, however, resulted in inhibition of iNOS activity at 3 days and a reduction in the activity at the later time points examined after injury. We also found greatly increased levels of adhesion of peritoneal macrophages from L-NAME-treated rats to epitenon monolayers in vitro, which reflect a chronic imbalance in expression of TGF-beta, which is overexpressed, and nitric oxide, which is underexpressed. The results of the current study show that formation of nitric oxide is an important event in the course of tendon healing since its inhibition results in chronic inflammation and fibrosis due to an imbalance in TGF-beta expression in vivo.
Full Text
The Full Text of this article is available as a PDF (109.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Albina J. E., Mills C. D., Barbul A., Thirkill C. E., Henry W. L., Jr, Mastrofrancesco B., Caldwell M. D. Arginine metabolism in wounds. Am J Physiol. 1988 Apr;254(4 Pt 1):E459–E467. doi: 10.1152/ajpendo.1988.254.4.E459. [DOI] [PubMed] [Google Scholar]
- Albina J. E., Mills C. D., Henry W. L., Jr, Caldwell M. D. Temporal expression of different pathways of 1-arginine metabolism in healing wounds. J Immunol. 1990 May 15;144(10):3877–3880. [PubMed] [Google Scholar]
- Banes A. J., Donlon K., Link G. W., Gillespie Y., Bevin A. G., Peterson H. D., Bynum D., Watts S., Dahners L. Cell populations of tendon: a simplified method for isolation of synovial cells and internal fibroblasts: confirmation of origin and biologic properties. J Orthop Res. 1988;6(1):83–94. doi: 10.1002/jor.1100060111. [DOI] [PubMed] [Google Scholar]
- Border W. A., Noble N. A. Transforming growth factor beta in tissue fibrosis. N Engl J Med. 1994 Nov 10;331(19):1286–1292. doi: 10.1056/NEJM199411103311907. [DOI] [PubMed] [Google Scholar]
- Border W. A., Ruoslahti E. Transforming growth factor-beta in disease: the dark side of tissue repair. J Clin Invest. 1992 Jul;90(1):1–7. doi: 10.1172/JCI115821. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boutard V., Havouis R., Fouqueray B., Philippe C., Moulinoux J. P., Baud L. Transforming growth factor-beta stimulates arginase activity in macrophages. Implications for the regulation of macrophage cytotoxicity. J Immunol. 1995 Aug 15;155(4):2077–2084. [PubMed] [Google Scholar]
- Brahmatewari J., Serafini A., Serralta V., Mertz P. M., Eaglstein W. H. The effects of topical transforming growth factor-beta2 and anti-transforming growth factor-beta2,3 on scarring in pigs. J Cutan Med Surg. 2000 Jul;4(3):126–131. doi: 10.1177/120347540000400303. [DOI] [PubMed] [Google Scholar]
- Chamberlain J. Transforming growth factor-beta: a promising target for anti-stenosis therapy. Cardiovasc Drug Rev. 2001 Winter;19(4):329–344. doi: 10.1111/j.1527-3466.2001.tb00074.x. [DOI] [PubMed] [Google Scholar]
- Chang J., Thunder R., Most D., Longaker M. T., Lineaweaver W. C. Studies in flexor tendon wound healing: neutralizing antibody to TGF-beta1 increases postoperative range of motion. Plast Reconstr Surg. 2000 Jan;105(1):148–155. doi: 10.1097/00006534-200001000-00025. [DOI] [PubMed] [Google Scholar]
- Chin T. Y., Lin Y. S., Chueh S. H. Antiproliferative effect of nitric oxide on rat glomerular mesangial cells via inhibition of mitogen-activated protein kinase. Eur J Biochem. 2001 Dec;268(24):6358–6368. doi: 10.1046/j.0014-2956.2001.02534.x. [DOI] [PubMed] [Google Scholar]
- Craven P. A., Studer R. K., Felder J., Phillips S., DeRubertis F. R. Nitric oxide inhibition of transforming growth factor-beta and collagen synthesis in mesangial cells. Diabetes. 1997 Apr;46(4):671–681. doi: 10.2337/diab.46.4.671. [DOI] [PubMed] [Google Scholar]
- Darmani Homa, Crossan James C., Curtis Adam. Single dose of inducible nitric oxide synthase inhibitor induces prolonged inflammatory cell accumulation and fibrosis around injured tendon and synovium. Mediators Inflamm. 2004 Jun;13(3):157–164. doi: 10.1080/09511920410001713556. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ferrini M. G., Vernet D., Magee T. R., Shahed A., Qian A., Rajfer J., Gonzalez-Cadavid N. F. Antifibrotic role of inducible nitric oxide synthase. Nitric Oxide. 2002 May;6(3):283–294. doi: 10.1006/niox.2001.0421. [DOI] [PubMed] [Google Scholar]
- Garg U. C., Hassid A. Inhibition of rat mesangial cell mitogenesis by nitric oxide-generating vasodilators. Am J Physiol. 1989 Jul;257(1 Pt 2):F60–F66. doi: 10.1152/ajprenal.1989.257.1.F60. [DOI] [PubMed] [Google Scholar]
- Gilbert R. S., Herschman H. R. Transforming growth factor beta differentially modulates the inducible nitric oxide synthase gene in distinct cell types. Biochem Biophys Res Commun. 1993 Aug 31;195(1):380–384. doi: 10.1006/bbrc.1993.2054. [DOI] [PubMed] [Google Scholar]
- Keil Annette, Blom Ingrid E., Goldschmeding Roel, Rupprecht Harald D. Nitric oxide down-regulates connective tissue growth factor in rat mesangial cells. Kidney Int. 2002 Aug;62(2):401–411. doi: 10.1046/j.1523-1755.2002.00462.x. [DOI] [PubMed] [Google Scholar]
- Klein Matthew B., Yalamanchi Naveen, Pham Hung, Longaker Michael T., Chang James. Flexor tendon healing in vitro: effects of TGF-beta on tendon cell collagen production. J Hand Surg Am. 2002 Jul;27(4):615–620. doi: 10.1053/jhsu.2002.34004. [DOI] [PubMed] [Google Scholar]
- Knowles R. G., Moncada S. Nitric oxide synthases in mammals. Biochem J. 1994 Mar 1;298(Pt 2):249–258. doi: 10.1042/bj2980249. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lefer D. J., Scalia R., Campbell B., Nossuli T., Hayward R., Salamon M., Grayson J., Lefer A. M. Peroxynitrite inhibits leukocyte-endothelial cell interactions and protects against ischemia-reperfusion injury in rats. J Clin Invest. 1997 Feb 15;99(4):684–691. doi: 10.1172/JCI119212. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lin J. H., Wang M. X., Wei A., Zhu W., Diwan A. D., Murrell G. A. Temporal expression of nitric oxide synthase isoforms in healing Achilles tendon. J Orthop Res. 2001 Jan;19(1):136–142. doi: 10.1016/S0736-0266(00)00019-X. [DOI] [PubMed] [Google Scholar]
- Ma X. L., Gao F., Lopez B. L., Christopher T. A., Vinten-Johansen J. Peroxynitrite, a two-edged sword in post-ischemic myocardial injury-dichotomy of action in crystalloid- versus blood-perfused hearts. J Pharmacol Exp Ther. 2000 Mar;292(3):912–920. [PubMed] [Google Scholar]
- Peters H., Noble N. A. Dietary L-arginine in renal disease. Semin Nephrol. 1996 Nov;16(6):567–575. [PubMed] [Google Scholar]
- Peters Harm, Daig Ute, Martini Sebastian, Rückert Matthias, Schäper Frank, Liefeldt Lutz, Krämer Stephanie, Neumayer Hans-H. NO mediates antifibrotic actions of L-arginine supplementation following induction of anti-thy1 glomerulonephritis. Kidney Int. 2003 Aug;64(2):509–518. doi: 10.1046/j.1523-1755.2003.00112.x. [DOI] [PubMed] [Google Scholar]
- Schaffer M. R., Tantry U., Gross S. S., Wasserburg H. L., Barbul A. Nitric oxide regulates wound healing. J Surg Res. 1996 Jun;63(1):237–240. doi: 10.1006/jsre.1996.0254. [DOI] [PubMed] [Google Scholar]
- Schäffer M. R., Tantry U., Thornton F. J., Barbul A. Inhibition of nitric oxide synthesis in wounds: pharmacology and effect on accumulation of collagen in wounds in mice. Eur J Surg. 1999 Mar;165(3):262–267. doi: 10.1080/110241599750007153. [DOI] [PubMed] [Google Scholar]
- Schäffer Michael, Weimer Wiebke, Wider Susanne, Stülten Christina, Bongartz Martina, Budach Wilfried, Becker Horst-Dieter. Differential expression of inflammatory mediators in radiation-impaired wound healing. J Surg Res. 2002 Sep;107(1):93–100. [PubMed] [Google Scholar]
- Shi H. P., Most D., Efron D. T., Tantry U., Fischel M. H., Barbul A. The role of iNOS in wound healing. Surgery. 2001 Aug;130(2):225–229. doi: 10.1067/msy.2001.115837. [DOI] [PubMed] [Google Scholar]
- Trachtman H., Futterweit S., Garg P., Reddy K., Singhal P. C. Nitric oxide stimulates the activity of a 72-kDa neutral matrix metalloproteinase in cultured rat mesangial cells. Biochem Biophys Res Commun. 1996 Jan 26;218(3):704–708. doi: 10.1006/bbrc.1996.0125. [DOI] [PubMed] [Google Scholar]
- Trachtman H., Futterweit S., Singhal P. C., Franki N., Sharma M., Sharma R., Savin V. Circulating factor in patients with recurrent focal segmental glomerulosclerosis postrenal transplantation inhibits expression of inducible nitric oxide synthase and nitric oxide production by cultured rat mesangial cells. J Investig Med. 1999 Mar;47(3):114–120. [PubMed] [Google Scholar]
- Trachtman H., Futterweit S., Singhal P. Nitric oxide modulates the synthesis of extracellular matrix proteins in cultured rat mesangial cells. Biochem Biophys Res Commun. 1995 Feb 6;207(1):120–125. doi: 10.1006/bbrc.1995.1161. [DOI] [PubMed] [Google Scholar]
- Vodovotz Y., Bogdan C., Paik J., Xie Q. W., Nathan C. Mechanisms of suppression of macrophage nitric oxide release by transforming growth factor beta. J Exp Med. 1993 Aug 1;178(2):605–613. doi: 10.1084/jem.178.2.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vodovotz Y. Control of nitric oxide production by transforming growth factor-beta1: mechanistic insights and potential relevance to human disease. Nitric Oxide. 1997 Feb;1(1):3–17. doi: 10.1006/niox.1996.0105. [DOI] [PubMed] [Google Scholar]
- Wahl S. M. Transforming growth factor beta (TGF-beta) in inflammation: a cause and a cure. J Clin Immunol. 1992 Mar;12(2):61–74. doi: 10.1007/BF00918135. [DOI] [PubMed] [Google Scholar]
- Westergren-Thorsson G., Onnervik P. O., Fransson L. A., Malmström A. Proliferation of cultured fibroblasts is inhibited by L-iduronate-containing glycosaminoglycans. J Cell Physiol. 1991 Jun;147(3):523–530. doi: 10.1002/jcp.1041470319. [DOI] [PubMed] [Google Scholar]
- Witte Maria B., Barbul Adrian, Schick Martin A., Vogt Nicole, Becker Horst Dieter. Upregulation of arginase expression in wound-derived fibroblasts. J Surg Res. 2002 Jun 1;105(1):35–42. doi: 10.1006/jsre.2002.6443. [DOI] [PubMed] [Google Scholar]
- Wojciak B., Crossan J. F. The accumulation of inflammatory cells in synovial sheath and epitenon during adhesion formation in healing rat flexor tendons. Clin Exp Immunol. 1993 Jul;93(1):108–114. doi: 10.1111/j.1365-2249.1993.tb06505.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zweier J. L., Fertmann J., Wei G. Nitric oxide and peroxynitrite in postischemic myocardium. Antioxid Redox Signal. 2001 Feb;3(1):11–22. doi: 10.1089/152308601750100443. [DOI] [PubMed] [Google Scholar]