Skip to main content
Mediators of Inflammation logoLink to Mediators of Inflammation
. 2004 Dec;13(5-6):343–348. doi: 10.1155/S096293510400050X

Role of type I interferon in the bacillus Calmette-Guérin-induced expression of CXCL10 from human monocytes.

Patricia Méndez Samperio 1, Artemisa Trejo 1, Elena Miranda 1
PMCID: PMC1781576  PMID: 15770050

Abstract

BACKGROUND: The proinflammatory chemokine CXCL10, in addition to its chemotactic properties, is also involved in the stimulation of natural killer and T-cell migration in Mycobacterium tuberculosis infection. In this study, our experiments were designed to determine the role of interferon (IFN)-alphabeta in the production of CXCL10 by human monocytes infected with Mycobacterium bovis bacillus Calmette-Guerin (BCG). METHODS: The concentrations of CXCL10 in culture supernatants of monocytes infected with M. bovis BCG were determined by enzyme-linked immunosorbent assay. CXCL10 mRNA levels were determined by the reverse transcription-polymerase chain reaction method. RESULTS: We have shown the induction of CXCL10 following infection with M. bovis BCG in a dose-dependent and time-dependent manner. Importantly, the secretion of CXCL10 in response to M. bovis was increased by IFN-alpha. These results were further confirmed by the fact that the addition of an anti-IFN-alphabeta neutralizing antibody completely reversed the stimulatory effect, whereas an isotype-matched control antibody had no significant effect on CXCL10 secretion. It is important to note that no significant effect of type I IFN on CXCL8 production in M. bovis-infected monocytes was observed. This was consistent with the finding by the reverse transcription-polymerase chain reaction method that treatment with anti-IFN-alpha/beta antibodies potentially inhibited CXCL10 mRNA levels, whereas no significant effect was observed on CXCL8 mRNA. Moreover, in THP-1 monocytes and THP-1 macrophages, the addition of exogenous IFN-alpha stimulated CXCL10 secretion. CONCLUSIONS: Collectively, these results indicate that the type I IFN may play an important role to modulate the expression of CXCL10 in M. bovis BCG infection. Studies on M. bovis-induced chemokine secretion could provide important insight into the regulation of the immune response against tuberculosis.

Full Text

The Full Text of this article is available as a PDF (154.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akbar A. N., Lord J. M., Salmon M. IFN-alpha and IFN-beta: a link between immune memory and chronic inflammation. Immunol Today. 2000 Jul;21(7):337–342. doi: 10.1016/s0167-5699(00)01652-2. [DOI] [PubMed] [Google Scholar]
  2. Baggiolini M., Dewald B., Moser B. Human chemokines: an update. Annu Rev Immunol. 1997;15:675–705. doi: 10.1146/annurev.immunol.15.1.675. [DOI] [PubMed] [Google Scholar]
  3. Biron C. A. Interferons alpha and beta as immune regulators--a new look. Immunity. 2001 Jun;14(6):661–664. doi: 10.1016/s1074-7613(01)00154-6. [DOI] [PubMed] [Google Scholar]
  4. Bogdan C. The function of type I interferons in antimicrobial immunity. Curr Opin Immunol. 2000 Aug;12(4):419–424. doi: 10.1016/s0952-7915(00)00111-4. [DOI] [PubMed] [Google Scholar]
  5. Braun M. C., Lahey E., Kelsall B. L. Selective suppression of IL-12 production by chemoattractants. J Immunol. 2000 Mar 15;164(6):3009–3017. doi: 10.4049/jimmunol.164.6.3009. [DOI] [PubMed] [Google Scholar]
  6. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  7. Collins H. L., Kaufmann S. H. The many faces of host responses to tuberculosis. Immunology. 2001 May;103(1):1–9. doi: 10.1046/j.1365-2567.2001.01236.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cooper A. M., Pearl J. E., Brooks J. V., Ehlers S., Orme I. M. Expression of the nitric oxide synthase 2 gene is not essential for early control of Mycobacterium tuberculosis in the murine lung. Infect Immun. 2000 Dec;68(12):6879–6882. doi: 10.1128/iai.68.12.6879-6882.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Flynn J. L., Chan J. Immunology of tuberculosis. Annu Rev Immunol. 2001;19:93–129. doi: 10.1146/annurev.immunol.19.1.93. [DOI] [PubMed] [Google Scholar]
  10. Giacomini E., Iona E., Ferroni L., Miettinen M., Fattorini L., Orefici G., Julkunen I., Coccia E. M. Infection of human macrophages and dendritic cells with Mycobacterium tuberculosis induces a differential cytokine gene expression that modulates T cell response. J Immunol. 2001 Jun 15;166(12):7033–7041. doi: 10.4049/jimmunol.166.12.7033. [DOI] [PubMed] [Google Scholar]
  11. Giosuè S., Casarini M., Ameglio F., Zangrilli P., Palla M., Altieri A. M., Bisetti A. Aerosolized interferon-alpha treatment in patients with multi-drug-resistant pulmonary tuberculosis. Eur Cytokine Netw. 2000 Mar;11(1):99–104. [PubMed] [Google Scholar]
  12. Giosué S., Casarini M., Alemanno L., Galluccio G., Mattia P., Pedicelli G., Rebek L., Bisetti A., Ameglio F. Effects of aerosolized interferon-alpha in patients with pulmonary tuberculosis. Am J Respir Crit Care Med. 1998 Oct;158(4):1156–1162. doi: 10.1164/ajrccm.158.4.9803065. [DOI] [PubMed] [Google Scholar]
  13. Goodbourn S., Didcock L., Randall R. E. Interferons: cell signalling, immune modulation, antiviral response and virus countermeasures. J Gen Virol. 2000 Oct;81(Pt 10):2341–2364. doi: 10.1099/0022-1317-81-10-2341. [DOI] [PubMed] [Google Scholar]
  14. He J., Gurunathan S., Iwasaki A., Ash-Shaheed B., Kelsall B. L. Primary role for Gi protein signaling in the regulation of interleukin 12 production and the induction of T helper cell type 1 responses. J Exp Med. 2000 May 1;191(9):1605–1610. doi: 10.1084/jem.191.9.1605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Karpus W. J., Kennedy K. J., Kunkel S. L., Lukacs N. W. Monocyte chemotactic protein 1 regulates oral tolerance induction by inhibition of T helper cell 1-related cytokines. J Exp Med. 1998 Mar 2;187(5):733–741. doi: 10.1084/jem.187.5.733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kawakami K., Qureshi M. H., Zhang T., Koguchi Y., Shibuya K., Naoe S., Saito A. Interferon-gamma (IFN-gamma)-dependent protection and synthesis of chemoattractants for mononuclear leucocytes caused by IL-12 in the lungs of mice infected with Cryptococcus neoformans. Clin Exp Immunol. 1999 Jul;117(1):113–122. doi: 10.1046/j.1365-2249.1999.00955.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kochi A. The global tuberculosis situation and the new control strategy of the World Health Organization. 1991. Bull World Health Organ. 2001;79(1):71–75. [PMC free article] [PubMed] [Google Scholar]
  18. Lin Y., Gong J., Zhang M., Xue W., Barnes P. F. Production of monocyte chemoattractant protein 1 in tuberculosis patients. Infect Immun. 1998 May;66(5):2319–2322. doi: 10.1128/iai.66.5.2319-2322.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Luft T., Pang K. C., Thomas E., Hertzog P., Hart D. N., Trapani J., Cebon J. Type I IFNs enhance the terminal differentiation of dendritic cells. J Immunol. 1998 Aug 15;161(4):1947–1953. [PubMed] [Google Scholar]
  20. Manca C., Tsenova L., Bergtold A., Freeman S., Tovey M., Musser J. M., Barry C. E., 3rd, Freedman V. H., Kaplan G. Virulence of a Mycobacterium tuberculosis clinical isolate in mice is determined by failure to induce Th1 type immunity and is associated with induction of IFN-alpha /beta. Proc Natl Acad Sci U S A. 2001 Apr 24;98(10):5752–5757. doi: 10.1073/pnas.091096998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Matikainen S., Pirhonen J., Miettinen M., Lehtonen A., Govenius-Vintola C., Sareneva T., Julkunen I. Influenza A and sendai viruses induce differential chemokine gene expression and transcription factor activation in human macrophages. Virology. 2000 Oct 10;276(1):138–147. doi: 10.1006/viro.2000.0542. [DOI] [PubMed] [Google Scholar]
  22. Mohammed K. A., Nasreen N., Ward M. J., Mubarak K. K., Rodriguez-Panadero F., Antony V. B. Mycobacterium-mediated chemokine expression in pleural mesothelial cells: role of C-C chemokines in tuberculous pleurisy. J Infect Dis. 1998 Nov;178(5):1450–1456. doi: 10.1086/314442. [DOI] [PubMed] [Google Scholar]
  23. Moser B., Loetscher P. Lymphocyte traffic control by chemokines. Nat Immunol. 2001 Feb;2(2):123–128. doi: 10.1038/84219. [DOI] [PubMed] [Google Scholar]
  24. Méndez-Samperio P., Palma J., Vázquez A. Roles of intracellular calcium and NF-kappaB in the Bacillus Calmette-Guérin-induced secretion of interleukin-8 from human monocytes. Cell Immunol. 2001 Aug 1;211(2):113–122. doi: 10.1006/cimm.2001.1816. [DOI] [PubMed] [Google Scholar]
  25. Méndez-Samperio P., Palma J., Vázquez A. Signals involved in mycobacteria-induced CXCL-8 production by human monocytes. J Interferon Cytokine Res. 2002 Feb;22(2):189–197. doi: 10.1089/107999002753536158. [DOI] [PubMed] [Google Scholar]
  26. Méndez-Samperio Patricia, García Elizabeth, Vázquez Abraham, Palma Janet. Regulation of interleukin-8 by interleukin-10 and transforming growth factor beta in human monocytes infected with mycobacterium bovis. Clin Diagn Lab Immunol. 2002 Jul;9(4):802–807. doi: 10.1128/CDLI.9.4.802-807.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Orme I. M., Cooper A. M. Cytokine/chemokine cascades in immunity to tuberculosis. Immunol Today. 1999 Jul;20(7):307–312. doi: 10.1016/s0167-5699(98)01438-8. [DOI] [PubMed] [Google Scholar]
  28. Palmero D., Eiguchi K., Rendo P., Castro Zorrilla L., Abbate E., González Montaner L. J. Phase II trial of recombinant interferon-alpha2b in patients with advanced intractable multidrug-resistant pulmonary tuberculosis: long-term follow-up. Int J Tuberc Lung Dis. 1999 Mar;3(3):214–218. [PubMed] [Google Scholar]
  29. Riedel D. D., Kaufmann S. H. Chemokine secretion by human polymorphonuclear granulocytes after stimulation with Mycobacterium tuberculosis and lipoarabinomannan. Infect Immun. 1997 Nov;65(11):4620–4623. doi: 10.1128/iai.65.11.4620-4623.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sadek M. I., Sada E., Toossi Z., Schwander S. K., Rich E. A. Chemokines induced by infection of mononuclear phagocytes with mycobacteria and present in lung alveoli during active pulmonary tuberculosis. Am J Respir Cell Mol Biol. 1998 Sep;19(3):513–521. doi: 10.1165/ajrcmb.19.3.2815. [DOI] [PubMed] [Google Scholar]
  31. Sgadari C., Angiolillo A. L., Tosato G. Inhibition of angiogenesis by interleukin-12 is mediated by the interferon-inducible protein 10. Blood. 1996 May 1;87(9):3877–3882. [PubMed] [Google Scholar]
  32. Tsuchiya S., Kobayashi Y., Goto Y., Okumura H., Nakae S., Konno T., Tada K. Induction of maturation in cultured human monocytic leukemia cells by a phorbol diester. Cancer Res. 1982 Apr;42(4):1530–1536. [PubMed] [Google Scholar]
  33. Weiden M., Tanaka N., Qiao Y., Zhao B. Y., Honda Y., Nakata K., Canova A., Levy D. E., Rom W. N., Pine R. Differentiation of monocytes to macrophages switches the Mycobacterium tuberculosis effect on HIV-1 replication from stimulation to inhibition: modulation of interferon response and CCAAT/enhancer binding protein beta expression. J Immunol. 2000 Aug 15;165(4):2028–2039. doi: 10.4049/jimmunol.165.4.2028. [DOI] [PubMed] [Google Scholar]
  34. Yoshie O., Imai T., Nomiyama H. Chemokines in immunity. Adv Immunol. 2001;78:57–110. doi: 10.1016/s0065-2776(01)78002-9. [DOI] [PubMed] [Google Scholar]
  35. Zlotnik A., Yoshie O. Chemokines: a new classification system and their role in immunity. Immunity. 2000 Feb;12(2):121–127. doi: 10.1016/s1074-7613(00)80165-x. [DOI] [PubMed] [Google Scholar]

Articles from Mediators of Inflammation are provided here courtesy of Wiley

RESOURCES