Skip to main content
Mediators of Inflammation logoLink to Mediators of Inflammation
. 2004 Dec;13(5-6):313–319. doi: 10.1155/S0962935104000468

Suppression of matrix metalloproteinase-9 production from neutrophils by a macrolide antibiotic, roxithromycin, in vitro.

Ken-Ichi Kanai 1, Kazuhito Asano 1, Tadashi Hisamitsu 1, Harumi Suzaki 1
PMCID: PMC1781582  PMID: 15770046

Abstract

BACKGROUND: Macrolide antibiotics such as erythromycin and roxithromycin (RXM) have an anti-inflammatory effect that may account for their clinical benefit in the treatment of chronic airway inflammatory diseases. However, the precise mechanism of this anti-inflammatory effect is not well understood. PURPOSE: The influence of RXM on matrix metalloproteinase (MMP)-9 production from neutrophils in response to lipopolysaccharide (LPS) stimulation was examined in vitro. METHODS: Neutrophils prepared from normal human peripheral blood (1 x 10(5) cells/ml) were treated with various concentrations of RXM for 1 h, and then stimulated with 1.0 microg/ml of LPS in the presence of the agent for 24 h. MMP-9 and tissue inhibitor of metalloproteinase (TIMP)-1 levels in culture supernatants were examined by enzyme-linked immunosorbent assay. RESULTS: Addition of RXM at more than 5.0 microg/ml into cell cultures caused significant suppression of MMP-9 production, which was increased by LPS stimulation. However, the ability of cells to produce TIMP-1 was not affected by RXM treatment, even when the cells were cultured in the presence of agent at 10.0 microg/mL We then examined the influence of RXM on transcriptional factor, nuclear factor-kappaB and activator protein (AP)-1 activation by LPS stimulation. RXM exerted suppressive action on NF-kappaB (P50 and P65) activation when the cells were cultured for 4 h at more than 5.0 microg/ml of the agent. RXM at more than 2.5 microg/ml also suppressed AP-1 (Fra 1 and Jun B) activation in 4-h cultured cells. We finally examined the influence of RXM on MMP-9 mRNA expression in neutrophils. Addition of RXM into cell cultures at more than 5.0 microg/ml caused significant inhibition of mRNA expression, which was enhanced by LPS stimulation for 12 h. CONCLUSION: These results strongly suggest that RXM inhibits neutrophil transmigration into inflammatory sites and results in favorable modification of the clinical status of inflammatory diseases.

Full Text

The Full Text of this article is available as a PDF (148.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Al-Rawi M. M., Edelstein D. R., Erlandson R. A. Changes in nasal epithelium in patients with severe chronic sinusitis: a clinicopathologic and electron microscopic study. Laryngoscope. 1998 Dec;108(12):1816–1823. doi: 10.1097/00005537-199812000-00010. [DOI] [PubMed] [Google Scholar]
  2. Asano K., Kamakazu K., Hisamitsu T., Suzaki H. Modulation of Th2 type cytokine production from human peripheral blood leukocytes by a macrolide antibiotic, roxithromycin, in vitro. Int Immunopharmacol. 2001 Oct;1(11):1913–1921. doi: 10.1016/s1567-5769(01)00116-3. [DOI] [PubMed] [Google Scholar]
  3. Atkinson Jeffrey J., Senior Robert M. Matrix metalloproteinase-9 in lung remodeling. Am J Respir Cell Mol Biol. 2003 Jan;28(1):12–24. doi: 10.1165/rcmb.2002-0166TR. [DOI] [PubMed] [Google Scholar]
  4. Birkedal-Hansen H., Moore W. G., Bodden M. K., Windsor L. J., Birkedal-Hansen B., DeCarlo A., Engler J. A. Matrix metalloproteinases: a review. Crit Rev Oral Biol Med. 1993;4(2):197–250. doi: 10.1177/10454411930040020401. [DOI] [PubMed] [Google Scholar]
  5. Cassatella M. A. Neutrophil-derived proteins: selling cytokines by the pound. Adv Immunol. 1999;73:369–509. doi: 10.1016/s0065-2776(08)60791-9. [DOI] [PubMed] [Google Scholar]
  6. Cataldo Didier D., Tournoy Kurt G., Vermaelen Karim, Munaut Carine, Foidart Jean-Michel, Louis Renaud, Noël Agnès, Pauwels Romain A. Matrix metalloproteinase-9 deficiency impairs cellular infiltration and bronchial hyperresponsiveness during allergen-induced airway inflammation. Am J Pathol. 2002 Aug;161(2):491–498. doi: 10.1016/S0002-9440(10)64205-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Delclaux C., Delacourt C., D'Ortho M. P., Boyer V., Lafuma C., Harf A. Role of gelatinase B and elastase in human polymorphonuclear neutrophil migration across basement membrane. Am J Respir Cell Mol Biol. 1996 Mar;14(3):288–295. doi: 10.1165/ajrcmb.14.3.8845180. [DOI] [PubMed] [Google Scholar]
  8. Desaki M., Takizawa H., Ohtoshi T., Kasama T., Kobayashi K., Sunazuka T., Omura S., Yamamoto K., Ito K. Erythromycin suppresses nuclear factor-kappaB and activator protein-1 activation in human bronchial epithelial cells. Biochem Biophys Res Commun. 2000 Jan 7;267(1):124–128. doi: 10.1006/bbrc.1999.1917. [DOI] [PubMed] [Google Scholar]
  9. Hashimoto N., Kawabe T., Hara T., Imaizumi K., Wakayama H., Saito H., Shimokata K., Hasegawa Y. Effect of erythromycin on matrix metalloproteinase-9 and cell migration. J Lab Clin Med. 2001 Mar;137(3):176–183. doi: 10.1067/mlc.2001.112726. [DOI] [PubMed] [Google Scholar]
  10. Iino Y., Toriyama M., Kudo K., Natori Y., Yuo A. Erythromycin inhibition of lipopolysaccharide-stimulated tumor necrosis factor alpha production by human monocytes in vitro. Ann Otol Rhinol Laryngol Suppl. 1992 Oct;157:16–20. doi: 10.1177/0003489492101s1005. [DOI] [PubMed] [Google Scholar]
  11. Ito J., Asano K., Tryka E., Kanai K., Yamamoto S., Hisamitsu T., Suzaki H. Suppressive effects of co-stimulatory molecule expressions on mouse splenocytes by anti-allergic agents in vitro. Mediators Inflamm. 2000;9(2):69–75. doi: 10.1080/096293500411523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jaffé A., Bush A. Anti-inflammatory effects of macrolides in lung disease. Pediatr Pulmonol. 2001 Jun;31(6):464–473. doi: 10.1002/ppul.1076. [DOI] [PubMed] [Google Scholar]
  13. Jaffé A., Francis J., Rosenthal M., Bush A. Long-term azithromycin may improve lung function in children with cystic fibrosis. Lancet. 1998 Feb 7;351(9100):420–420. doi: 10.1016/S0140-6736(05)78360-4. [DOI] [PubMed] [Google Scholar]
  14. Kadota J., Sakito O., Kohno S., Sawa H., Mukae H., Oda H., Kawakami K., Fukushima K., Hiratani K., Hara K. A mechanism of erythromycin treatment in patients with diffuse panbronchiolitis. Am Rev Respir Dis. 1993 Jan;147(1):153–159. doi: 10.1164/ajrccm/147.1.153. [DOI] [PubMed] [Google Scholar]
  15. Keicho Naoto, Kudoh Shoji. Diffuse panbronchiolitis: role of macrolides in therapy. Am J Respir Med. 2002;1(2):119–131. doi: 10.1007/BF03256601. [DOI] [PubMed] [Google Scholar]
  16. Lee H. S., Majima Y., Sakakura Y., Shinogi J., Kawaguchi S., Kim B. W. Quantitative cytology of nasal secretions under various conditions. Laryngoscope. 1993 May;103(5):533–537. doi: 10.1288/00005537-199305000-00010. [DOI] [PubMed] [Google Scholar]
  17. Majima Y., Masuda S., Sakakura Y. Quantitative study of nasal secretory cells in normal subjects and patients with chronic sinusitis. Laryngoscope. 1997 Nov;107(11 Pt 1):1515–1518. doi: 10.1097/00005537-199711000-00017. [DOI] [PubMed] [Google Scholar]
  18. Mignatti P., Rifkin D. B. Biology and biochemistry of proteinases in tumor invasion. Physiol Rev. 1993 Jan;73(1):161–195. doi: 10.1152/physrev.1993.73.1.161. [DOI] [PubMed] [Google Scholar]
  19. Noma T., Aoki K., Hayashi M., Yoshizawa I., Kawano Y. Effect of roxithromycin on T lymphocyte proliferation and cytokine production elicited by mite antigen. Int Immunopharmacol. 2001 Feb;1(2):201–210. doi: 10.1016/s1567-5769(00)00023-0. [DOI] [PubMed] [Google Scholar]
  20. Ohno I., Ohtani H., Nitta Y., Suzuki J., Hoshi H., Honma M., Isoyama S., Tanno Y., Tamura G., Yamauchi K. Eosinophils as a source of matrix metalloproteinase-9 in asthmatic airway inflammation. Am J Respir Cell Mol Biol. 1997 Mar;16(3):212–219. doi: 10.1165/ajrcmb.16.3.9070604. [DOI] [PubMed] [Google Scholar]
  21. Okada S., Kita H., George T. J., Gleich G. J., Leiferman K. M. Migration of eosinophils through basement membrane components in vitro: role of matrix metalloproteinase-9. Am J Respir Cell Mol Biol. 1997 Oct;17(4):519–528. doi: 10.1165/ajrcmb.17.4.2877. [DOI] [PubMed] [Google Scholar]
  22. Sato H., Seiki M. Regulatory mechanism of 92 kDa type IV collagenase gene expression which is associated with invasiveness of tumor cells. Oncogene. 1993 Feb;8(2):395–405. [PubMed] [Google Scholar]
  23. Stetler-Stevenson W. G. Dynamics of matrix turnover during pathologic remodeling of the extracellular matrix. Am J Pathol. 1996 May;148(5):1345–1350. [PMC free article] [PubMed] [Google Scholar]
  24. Suzaki H., Asano K., Ohki S., Kanai K., Mizutani T., Hisamitsu T. Suppressive activity of a macrolide antibiotic, roxithromycin, on pro-inflammatory cytokine production in vitro and in vivo. Mediators Inflamm. 1999;8(4-5):199–204. doi: 10.1080/09629359990351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Tamaoki J., Isono K., Sakai N., Kanemura T., Konno K. Erythromycin inhibits Cl secretion across canine tracheal epithelial cells. Eur Respir J. 1992 Feb;5(2):234–238. [PubMed] [Google Scholar]
  26. Vestweber D., Blanks J. E. Mechanisms that regulate the function of the selectins and their ligands. Physiol Rev. 1999 Jan;79(1):181–213. doi: 10.1152/physrev.1999.79.1.181. [DOI] [PubMed] [Google Scholar]
  27. Wasylyk C., Gutman A., Nicholson R., Wasylyk B. The c-Ets oncoprotein activates the stromelysin promoter through the same elements as several non-nuclear oncoproteins. EMBO J. 1991 May;10(5):1127–1134. doi: 10.1002/j.1460-2075.1991.tb08053.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Mediators of Inflammation are provided here courtesy of Wiley

RESOURCES