Abstract
Studies were carried out to evaluate the impact of a high-fat dietary regimen on aortic wall thickness, peripheral blood leukocyte profile, and plasma cholesterol and triglyceride levels in the mast cell-deficient Sl/Sl(d) mouse. The results demonstrated that the mean aortic wall thickness of Sl/Sl(d) mice was significantly higher than their normal littermates, and were increased in both genotypes after a 17-day high-fat regimen. In comparison with normal littermates, Sl/Sl(d) genotypes had elevated levels of plasma triglycerides with normal levels of plasma cholesterol, and the high-fat diet markedly lowered the triglyceride levels. Total peripheral blood leukocytes, the monocyte and granulocyte counts, and hemoglobin levels were significantly lower in Sl/Sl(d) mice, although the number of lymphocytes, eosinophils and basophils were the same in both genotypes. Interestingly, the high-fat diet regimen elevated leukocyte counts and the number of monocytes and granulocytes in Sl/Sl(d) mice.
Full Text
The Full Text of this article is available as a PDF (148.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allain C. C., Poon L. S., Chan C. S., Richmond W., Fu P. C. Enzymatic determination of total serum cholesterol. Clin Chem. 1974 Apr;20(4):470–475. [PubMed] [Google Scholar]
- Baram D., Vaday G. G., Salamon P., Drucker I., Hershkoviz R., Mekori Y. A. Human mast cells release metalloproteinase-9 on contact with activated T cells: juxtacrine regulation by TNF-alpha. J Immunol. 2001 Oct 1;167(7):4008–4016. doi: 10.4049/jimmunol.167.7.4008. [DOI] [PubMed] [Google Scholar]
- Brannan C. I., Lyman S. D., Williams D. E., Eisenman J., Anderson D. M., Cosman D., Bedell M. A., Jenkins N. A., Copeland N. G. Steel-Dickie mutation encodes a c-kit ligand lacking transmembrane and cytoplasmic domains. Proc Natl Acad Sci U S A. 1991 Jun 1;88(11):4671–4674. doi: 10.1073/pnas.88.11.4671. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bubnic S. J., Wang X-H, Clark B. R., Keating A. W/Wv marrow stromal cells engraft and enhance early erythropoietic progenitors in unconditioned Sl/Sld murine recipients. Bone Marrow Transplant. 2002 Dec;30(12):867–872. doi: 10.1038/sj.bmt.1703761. [DOI] [PubMed] [Google Scholar]
- Bucolo G., David H. Quantitative determination of serum triglycerides by the use of enzymes. Clin Chem. 1973 May;19(5):476–482. [PubMed] [Google Scholar]
- Chi L., Li Y., Stehno-Bittel L., Gao J., Morrison D. C., Stechschulte D. J., Dileepan K. N. Interleukin-6 production by endothelial cells via stimulation of protease-activated receptors is amplified by endotoxin and tumor necrosis factor-alpha. J Interferon Cytokine Res. 2001 Apr;21(4):231–240. doi: 10.1089/107999001750169871. [DOI] [PubMed] [Google Scholar]
- Davies M. J. The composition of coronary-artery plaques. N Engl J Med. 1997 May 1;336(18):1312–1314. doi: 10.1056/NEJM199705013361809. [DOI] [PubMed] [Google Scholar]
- DeSchryver-Kecskemeti K., Williamson J. R., Jakschik B. A., Clouse R. E., Alpers D. H. Mast cell granules within endothelial cells: a possible signal in the inflammatory process? Mod Pathol. 1992 May;5(3):343–347. [PubMed] [Google Scholar]
- Dileepan K. N., Lorsbach R. B., Stechschulte D. J. Mast cell granules inhibit macrophage-mediated lysis of mastocytoma cells (P815) and nitric oxide production. J Leukoc Biol. 1993 Apr;53(4):446–453. doi: 10.1002/jlb.53.4.446. [DOI] [PubMed] [Google Scholar]
- Dvorak A. M. Mast-cell degranulation in human hearts. N Engl J Med. 1986 Oct 9;315(15):969–970. doi: 10.1056/nejm198610093151515. [DOI] [PubMed] [Google Scholar]
- Fang K. C., Raymond W. W., Lazarus S. C., Caughey G. H. Dog mastocytoma cells secrete a 92-kD gelatinase activated extracellularly by mast cell chymase. J Clin Invest. 1996 Apr 1;97(7):1589–1596. doi: 10.1172/JCI118583. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fang K. C., Wolters P. J., Steinhoff M., Bidgol A., Blount J. L., Caughey G. H. Mast cell expression of gelatinases A and B is regulated by kit ligand and TGF-beta. J Immunol. 1999 May 1;162(9):5528–5535. [PubMed] [Google Scholar]
- Flanagan J. G., Chan D. C., Leder P. Transmembrane form of the kit ligand growth factor is determined by alternative splicing and is missing in the Sld mutant. Cell. 1991 Mar 8;64(5):1025–1035. doi: 10.1016/0092-8674(91)90326-t. [DOI] [PubMed] [Google Scholar]
- Flanagan J. G., Leder P. The kit ligand: a cell surface molecule altered in steel mutant fibroblasts. Cell. 1990 Oct 5;63(1):185–194. doi: 10.1016/0092-8674(90)90299-t. [DOI] [PubMed] [Google Scholar]
- Fleischman R. A., Simpson F., Gallardo T., Jin X. L., Perkins S. Isolation of endothelial-like stromal cells that express Kit ligand and support in vitro hematopoiesis. Exp Hematol. 1995 Dec;23(13):1407–1416. [PubMed] [Google Scholar]
- Forman M. B., Oates J. A., Robertson D., Robertson R. M., Roberts L. J., 2nd, Virmani R. Increased adventitial mast cells in a patient with coronary spasm. N Engl J Med. 1985 Oct 31;313(18):1138–1141. doi: 10.1056/NEJM198510313131807. [DOI] [PubMed] [Google Scholar]
- Galli S. J. New concepts about the mast cell. N Engl J Med. 1993 Jan 28;328(4):257–265. doi: 10.1056/NEJM199301283280408. [DOI] [PubMed] [Google Scholar]
- Hatanaka K., Tanishita H., Ishibashi-Ueda H., Yamamoto A. Hyperlipidemia in mast cell-deficient W/WV mice. Biochim Biophys Acta. 1986 Oct 3;878(3):440–445. doi: 10.1016/0005-2760(86)90254-7. [DOI] [PubMed] [Google Scholar]
- Hoit B. D., Shao Y., Kinoshita A., Gabel M., Husain A., Walsh R. A. Effects of angiotensin II generated by an angiotensin converting enzyme-independent pathway on left ventricular performance in the conscious baboon. J Clin Invest. 1995 Apr;95(4):1519–1527. doi: 10.1172/JCI117824. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ikemoto S., Takahashi M., Tsunoda N., Maruyama K., Itakura H., Kawanaka K., Tabata I., Higuchi M., Tange T., Yamamoto T. T. Cholate inhibits high-fat diet-induced hyperglycemia and obesity with acyl-CoA synthetase mRNA decrease. Am J Physiol. 1997 Jul;273(1 Pt 1):E37–E45. doi: 10.1152/ajpendo.1997.273.1.E37. [DOI] [PubMed] [Google Scholar]
- Jehle A. B., Li Y., Stechschulte A. C., Stechschulte D. J., Dileepan K. N. Endotoxin and mast cell granule proteases synergistically activate human coronary artery endothelial cells to generate interleukin-6 and interleukin-8. J Interferon Cytokine Res. 2000 Apr;20(4):361–368. doi: 10.1089/107999000312298. [DOI] [PubMed] [Google Scholar]
- Jeziorska M., McCollum C., Woolley D. E. Calcification in atherosclerotic plaque of human carotid arteries: associations with mast cells and macrophages. J Pathol. 1998 May;185(1):10–17. doi: 10.1002/(SICI)1096-9896(199805)185:1<10::AID-PATH71>3.0.CO;2-0. [DOI] [PubMed] [Google Scholar]
- Jeziorska M., McCollum C., Woolley D. E. Mast cell distribution, activation, and phenotype in atherosclerotic lesions of human carotid arteries. J Pathol. 1997 May;182(1):115–122. doi: 10.1002/(SICI)1096-9896(199705)182:1<115::AID-PATH806>3.0.CO;2-9. [DOI] [PubMed] [Google Scholar]
- Kalsner S., Richards R. Coronary arteries of cardiac patients are hyperreactive and contain stores of amines: a mechanism for coronary spasm. Science. 1984 Mar 30;223(4643):1435–1437. doi: 10.1126/science.6701530. [DOI] [PubMed] [Google Scholar]
- Kokkonen J. O., Lindstedt K. A., Kovanen P. T. Metabolism of LDL in mast cells recovering from degranulation. Description of a novel intracellular pathway leading to proteolytic modification of the lipoprotein. Arterioscler Thromb. 1993 Feb;13(2):276–285. doi: 10.1161/01.atv.13.2.276. [DOI] [PubMed] [Google Scholar]
- Komatsu S., Grisham M. B., Russell J. M., Granger D. N. Enhanced mucosal permeability and nitric oxide synthase activity in jejunum of mast cell deficient mice. Gut. 1997 Nov;41(5):636–641. doi: 10.1136/gut.41.5.636. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lees M., Taylor D. J., Woolley D. E. Mast cell proteinases activate precursor forms of collagenase and stromelysin, but not of gelatinases A and B. Eur J Biochem. 1994 Jul 1;223(1):171–177. doi: 10.1111/j.1432-1033.1994.tb18980.x. [DOI] [PubMed] [Google Scholar]
- Li Y., Chi L., Stechschulte D. J., Dileepan K. N. Histamine-induced production of interleukin-6 and interleukin-8 by human coronary artery endothelial cells is enhanced by endotoxin and tumor necrosis factor-alpha. Microvasc Res. 2001 May;61(3):253–262. doi: 10.1006/mvre.2001.2304. [DOI] [PubMed] [Google Scholar]
- Lindstedt K. A. Inhibition of macrophage-mediated low density lipoprotein oxidation by stimulated rat serosal mast cells. J Biol Chem. 1993 Apr 15;268(11):7741–7746. [PubMed] [Google Scholar]
- Lohi J., Harvima I., Keski-Oja J. Pericellular substrates of human mast cell tryptase: 72,000 dalton gelatinase and fibronectin. J Cell Biochem. 1992 Dec;50(4):337–349. doi: 10.1002/jcb.240500402. [DOI] [PubMed] [Google Scholar]
- Marks R. M., Roche W. R., Czerniecki M., Penny R., Nelson D. S. Mast cell granules cause proliferation of human microvascular endothelial cells. Lab Invest. 1986 Sep;55(3):289–294. [PubMed] [Google Scholar]
- Patella V., Marinò I., Lampärter B., Arbustini E., Adt M., Marone G. Human heart mast cells. Isolation, purification, ultrastructure, and immunologic characterization. J Immunol. 1995 Mar 15;154(6):2855–2865. [PubMed] [Google Scholar]
- Reynolds D. S., Gurley D. S., Stevens R. L., Sugarbaker D. J., Austen K. F., Serafin W. E. Cloning of cDNAs that encode human mast cell carboxypeptidase A, and comparison of the protein with mouse mast cell carboxypeptidase A and rat pancreatic carboxypeptidases. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9480–9484. doi: 10.1073/pnas.86.23.9480. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ross R. Atherosclerosis--an inflammatory disease. N Engl J Med. 1999 Jan 14;340(2):115–126. doi: 10.1056/NEJM199901143400207. [DOI] [PubMed] [Google Scholar]
- Schwartz L. B., Irani A. M., Roller K., Castells M. C., Schechter N. M. Quantitation of histamine, tryptase, and chymase in dispersed human T and TC mast cells. J Immunol. 1987 Apr 15;138(8):2611–2615. [PubMed] [Google Scholar]
- Schwarzenberger P., Huang W., Ye P., Oliver P., Manuel M., Zhang Z., Bagby G., Nelson S., Kolls J. K. Requirement of endogenous stem cell factor and granulocyte-colony-stimulating factor for IL-17-mediated granulopoiesis. J Immunol. 2000 May 1;164(9):4783–4789. doi: 10.4049/jimmunol.164.9.4783. [DOI] [PubMed] [Google Scholar]
- Stechschulte D. J., Sharma R., Dileepan K. N., Simpson K. M., Aggarwal N., Clancy J., Jr, Jilka R. L. Effect of the mi allele on mast cells, basophils, natural killer cells, and osteoclasts in C57Bl/6J mice. J Cell Physiol. 1987 Sep;132(3):565–570. doi: 10.1002/jcp.1041320321. [DOI] [PubMed] [Google Scholar]
- Talreja Jaya, Kabir Mohammad H., B Filla Michael, Stechschulte Daniel J., Dileepan Kottarappat N. Histamine induces Toll-like receptor 2 and 4 expression in endothelial cells and enhances sensitivity to Gram-positive and Gram-negative bacterial cell wall components. Immunology. 2004 Oct;113(2):224–233. doi: 10.1111/j.1365-2567.2004.01946.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tanaka A., Arai K., Kitamura Y., Matsuda H. Matrix metalloproteinase-9 production, a newly identified function of mast cell progenitors, is downregulated by c-kit receptor activation. Blood. 1999 Oct 1;94(7):2390–2395. [PubMed] [Google Scholar]
- Urata H., Kinoshita A., Misono K. S., Bumpus F. M., Husain A. Identification of a highly specific chymase as the major angiotensin II-forming enzyme in the human heart. J Biol Chem. 1990 Dec 25;265(36):22348–22357. [PubMed] [Google Scholar]
- Vanderslice P., Ballinger S. M., Tam E. K., Goldstein S. M., Craik C. S., Caughey G. H. Human mast cell tryptase: multiple cDNAs and genes reveal a multigene serine protease family. Proc Natl Acad Sci U S A. 1990 May;87(10):3811–3815. doi: 10.1073/pnas.87.10.3811. [DOI] [PMC free article] [PubMed] [Google Scholar]
