Skip to main content
Mediators of Inflammation logoLink to Mediators of Inflammation
. 2003 Jun;12(3):173–178. doi: 10.1080/0962935031000134897

mRNA expression and release of interleukin-8 induced by serum amyloid A in neutrophils and monocytes.

Fernanda Pereira Ribeiro 1, Cristiane Jaciara Furlaneto 1, Elaine Hatanaka 1, Wesley Bueno Ribeiro 1, Glaucia Mendes Souza 1, Marco A Cassatella 1, Ana Campa 1
PMCID: PMC1781605  PMID: 12857601

Abstract

The acute phase response is a systemic reaction to inflammatory processes characterized by multiple physiological adaptations, including the hepatic synthesis of acute-phase proteins. In humans, serum amyloid A (SAA) is one of the most prominent of these proteins. Despite the huge increase of serum levels of SAA in inflammation, its biological role remains to be elucidated, even though SAA is undoubtedly active in neutrophils. In a previous study, we reported that SAA induces the release of tumor necrosis factor-alpha, interleukin (IL)-1beta and IL-8 from human blood neutrophils. Here, we extend our earlier study, focusing on the effect of SAA on neutrophil IL-8 transcription and on the signaling pathways involved. We demonstrate herein that SAA, in relatively low concentrations (0.4-100 microg/ml) compared with those found in plasma in inflammatory conditions, induces a dose-dependent release of IL-8 from neutrophils. The p38 mitogen-activated protein kinase inhibitor SB 203580 inhibits the IL-8 mRNA expression and the release of protein from neutrophils. The release of IL-8 from SAA-stimulated neutrophils is strongly suppressed by the addition of N-acetyl-l-cysteine, alpha-mercaptoethanol, glutathione, and dexamethasone. SAA also induces IL-8 expression and release from monocytes. In conclusion, SAA appears to be an important mediator of the inflammatory process, possibly contributing to the pool of IL-8 produced in chronic diseases, which may play a role in degenerative diseases.

Full Text

The Full Text of this article is available as a PDF (212.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alessi D. R., Cuenda A., Cohen P., Dudley D. T., Saltiel A. R. PD 098059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo. J Biol Chem. 1995 Nov 17;270(46):27489–27494. doi: 10.1074/jbc.270.46.27489. [DOI] [PubMed] [Google Scholar]
  2. Badolato R., Wang J. M., Stornello S. L., Ponzi A. N., Duse M., Musso T. Serum amyloid A is an activator of PMN antimicrobial functions: induction of degranulation, phagocytosis, and enhancement of anti-Candida activity. J Leukoc Biol. 2000 Mar;67(3):381–386. doi: 10.1002/jlb.67.3.381. [DOI] [PubMed] [Google Scholar]
  3. Baggiolini M., Dewald B., Moser B. Human chemokines: an update. Annu Rev Immunol. 1997;15:675–705. doi: 10.1146/annurev.immunol.15.1.675. [DOI] [PubMed] [Google Scholar]
  4. Baumann H., Gauldie J. The acute phase response. Immunol Today. 1994 Feb;15(2):74–80. doi: 10.1016/0167-5699(94)90137-6. [DOI] [PubMed] [Google Scholar]
  5. Biran H., Friedman N., Neumann L., Pras M., Shainkin-Kestenbaum R. Serum amyloid A (SAA) variations in patients with cancer: correlation with disease activity, stage, primary site, and prognosis. J Clin Pathol. 1986 Jul;39(7):794–797. doi: 10.1136/jcp.39.7.794. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cassatella M. A., Bazzoni F., Ceska M., Ferro I., Baggiolini M., Berton G. IL-8 production by human polymorphonuclear leukocytes. The chemoattractant formyl-methionyl-leucyl-phenylalanine induces the gene expression and release of IL-8 through a pertussis toxin-sensitive pathway. J Immunol. 1992 May 15;148(10):3216–3220. [PubMed] [Google Scholar]
  7. Cassatella M. A., Bazzoni F., Flynn R. M., Dusi S., Trinchieri G., Rossi F. Molecular basis of interferon-gamma and lipopolysaccharide enhancement of phagocyte respiratory burst capability. Studies on the gene expression of several NADPH oxidase components. J Biol Chem. 1990 Nov 25;265(33):20241–20246. [PubMed] [Google Scholar]
  8. Chuang Shuang En, Yeh Pei Yen, Lu Yen Shen, Lai Gi Ming, Liao Chao Ming, Gao Ming, Cheng Ann Lii. Basal levels and patterns of anticancer drug-induced activation of nuclear factor-kappaB (NF-kappaB), and its attenuation by tamoxifen, dexamethasone, and curcumin in carcinoma cells. Biochem Pharmacol. 2002 May 1;63(9):1709–1716. doi: 10.1016/s0006-2952(02)00931-0. [DOI] [PubMed] [Google Scholar]
  9. Chung T. F., Sipe J. D., McKee A., Fine R. E., Schreiber B. M., Liang J. S., Johnson R. J. Serum amyloid A in Alzheimer's disease brain is predominantly localized to myelin sheaths and axonal membrane. Amyloid. 2000 Jun;7(2):105–110. doi: 10.3109/13506120009146246. [DOI] [PubMed] [Google Scholar]
  10. Coffer P. J., Geijsen N., M'rabet L., Schweizer R. C., Maikoe T., Raaijmakers J. A., Lammers J. W., Koenderman L. Comparison of the roles of mitogen-activated protein kinase kinase and phosphatidylinositol 3-kinase signal transduction in neutrophil effector function. Biochem J. 1998 Jan 1;329(Pt 1):121–130. doi: 10.1042/bj3290121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Constantin G., Laudanna C., Baron P., Berton G. Sulfatides trigger cytokine gene expression and secretion in human monocytes. FEBS Lett. 1994 Aug 15;350(1):66–70. doi: 10.1016/0014-5793(94)00735-7. [DOI] [PubMed] [Google Scholar]
  12. Dudley D. T., Pang L., Decker S. J., Bridges A. J., Saltiel A. R. A synthetic inhibitor of the mitogen-activated protein kinase cascade. Proc Natl Acad Sci U S A. 1995 Aug 15;92(17):7686–7689. doi: 10.1073/pnas.92.17.7686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Furlaneto C. J., Campa A. A novel function of serum amyloid A: a potent stimulus for the release of tumor necrosis factor-alpha, interleukin-1beta, and interleukin-8 by human blood neutrophil. Biochem Biophys Res Commun. 2000 Feb 16;268(2):405–408. doi: 10.1006/bbrc.2000.2143. [DOI] [PubMed] [Google Scholar]
  14. Fyfe A. I., Rothenberg L. S., DeBeer F. C., Cantor R. M., Rotter J. I., Lusis A. J. Association between serum amyloid A proteins and coronary artery disease: evidence from two distinct arteriosclerotic processes. Circulation. 1997 Nov 4;96(9):2914–2919. doi: 10.1161/01.cir.96.9.2914. [DOI] [PubMed] [Google Scholar]
  15. Godenir N. L., Jeenah M. S., Coetzee G. A., Van der Westhuyzen D. R., Strachan A. F., De Beer F. C. Standardisation of the quantitation of serum amyloid A protein (SAA) in human serum. J Immunol Methods. 1985 Nov 7;83(2):217–225. doi: 10.1016/0022-1759(85)90243-1. [DOI] [PubMed] [Google Scholar]
  16. He Rong, Sang Hairong, Ye Richard D. Serum amyloid A induces IL-8 secretion through a G protein-coupled receptor, FPRL1/LXA4R. Blood. 2002 Sep 26;101(4):1572–1581. doi: 10.1182/blood-2002-05-1431. [DOI] [PubMed] [Google Scholar]
  17. Hilliquin P. Biological markers in inflammatory rheumatic diseases. Cell Mol Biol (Noisy-le-grand) 1995 Dec;41(8):993–1006. [PubMed] [Google Scholar]
  18. Kumon Y., Sipe J. D., Brinckerhoff C. E., Schreiber B. M. Regulation of extrahepatic apolipoprotein serum amyloid A (ApoSAA) gene expression by interleukin-1 alpha alone: synthesis and secretion of ApoSAA by cultured aortic smooth muscle cells. Scand J Immunol. 1997 Sep;46(3):284–291. doi: 10.1046/j.1365-3083.1997.d01-128.x. [DOI] [PubMed] [Google Scholar]
  19. Kumon Y., Suehiro T., Itahara T., Ikeda Y., Hashimoto K. Serum amyloid A protein in patients with non-insulin-dependent diabetes mellitus. Clin Biochem. 1994 Dec;27(6):469–473. doi: 10.1016/0009-9120(94)00044-v. [DOI] [PubMed] [Google Scholar]
  20. Lee J. C., Laydon J. T., McDonnell P. C., Gallagher T. F., Kumar S., Green D., McNulty D., Blumenthal M. J., Heys J. R., Landvatter S. W. A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature. 1994 Dec 22;372(6508):739–746. doi: 10.1038/372739a0. [DOI] [PubMed] [Google Scholar]
  21. Lopez-Ilasaca M. Signaling from G-protein-coupled receptors to mitogen-activated protein (MAP)-kinase cascades. Biochem Pharmacol. 1998 Aug 1;56(3):269–277. doi: 10.1016/s0006-2952(98)00059-8. [DOI] [PubMed] [Google Scholar]
  22. Marie C., Losser M. R., Fitting C., Kermarrec N., Payen D., Cavaillon J. M. Cytokines and soluble cytokine receptors in pleural effusions from septic and nonseptic patients. Am J Respir Crit Care Med. 1997 Nov;156(5):1515–1522. doi: 10.1164/ajrccm.156.5.9702108. [DOI] [PubMed] [Google Scholar]
  23. Marie C., Roman-Roman S., Rawadi G. Involvement of mitogen-activated protein kinase pathways in interleukin-8 production by human monocytes and polymorphonuclear cells stimulated with lipopolysaccharide or Mycoplasma fermentans membrane lipoproteins. Infect Immun. 1999 Feb;67(2):688–693. doi: 10.1128/iai.67.2.688-693.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Marinissen M. J., Gutkind J. S. G-protein-coupled receptors and signaling networks: emerging paradigms. Trends Pharmacol Sci. 2001 Jul;22(7):368–376. doi: 10.1016/s0165-6147(00)01678-3. [DOI] [PubMed] [Google Scholar]
  25. Marty C., Misset B., Tamion F., Fitting C., Carlet J., Cavaillon J. M. Circulating interleukin-8 concentrations in patients with multiple organ failure of septic and nonseptic origin. Crit Care Med. 1994 Apr;22(4):673–679. doi: 10.1097/00003246-199404000-00025. [DOI] [PubMed] [Google Scholar]
  26. Matsushima K., Morishita K., Yoshimura T., Lavu S., Kobayashi Y., Lew W., Appella E., Kung H. F., Leonard E. J., Oppenheim J. J. Molecular cloning of a human monocyte-derived neutrophil chemotactic factor (MDNCF) and the induction of MDNCF mRNA by interleukin 1 and tumor necrosis factor. J Exp Med. 1988 Jun 1;167(6):1883–1893. doi: 10.1084/jem.167.6.1883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Meek R. L., Urieli-Shoval S., Benditt E. P. Expression of apolipoprotein serum amyloid A mRNA in human atherosclerotic lesions and cultured vascular cells: implications for serum amyloid A function. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3186–3190. doi: 10.1073/pnas.91.8.3186. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Mihm S., Ennen J., Pessara U., Kurth R., Dröge W. Inhibition of HIV-1 replication and NF-kappa B activity by cysteine and cysteine derivatives. AIDS. 1991 May;5(5):497–503. doi: 10.1097/00002030-199105000-00004. [DOI] [PubMed] [Google Scholar]
  29. Miller M. D., Krangel M. S. Biology and biochemistry of the chemokines: a family of chemotactic and inflammatory cytokines. Crit Rev Immunol. 1992;12(1-2):17–46. [PubMed] [Google Scholar]
  30. Morrison D. C., Jacobs D. M. Binding of polymyxin B to the lipid A portion of bacterial lipopolysaccharides. Immunochemistry. 1976 Oct;13(10):813–818. doi: 10.1016/0019-2791(76)90181-6. [DOI] [PubMed] [Google Scholar]
  31. Pepys M. B., Baltz M. L. Acute phase proteins with special reference to C-reactive protein and related proteins (pentaxins) and serum amyloid A protein. Adv Immunol. 1983;34:141–212. doi: 10.1016/s0065-2776(08)60379-x. [DOI] [PubMed] [Google Scholar]
  32. Rane M. J., Carrithers S. L., Arthur J. M., Klein J. B., McLeish K. R. Formyl peptide receptors are coupled to multiple mitogen-activated protein kinase cascades by distinct signal transduction pathways: role in activation of reduced nicotinamide adenine dinucleotide oxidase. J Immunol. 1997 Nov 15;159(10):5070–5078. [PubMed] [Google Scholar]
  33. Reape T. J., Groot P. H. Chemokines and atherosclerosis. Atherosclerosis. 1999 Dec;147(2):213–225. doi: 10.1016/s0021-9150(99)00346-9. [DOI] [PubMed] [Google Scholar]
  34. Remick D. G., Villarete L. Regulation of cytokine gene expression by reactive oxygen and reactive nitrogen intermediates. J Leukoc Biol. 1996 Apr;59(4):471–475. doi: 10.1002/jlb.59.4.471. [DOI] [PubMed] [Google Scholar]
  35. Rutault K., Hazzalin C. A., Mahadevan L. C. Combinations of ERK and p38 MAPK inhibitors ablate tumor necrosis factor-alpha (TNF-alpha ) mRNA induction. Evidence for selective destabilization of TNF-alpha transcripts. J Biol Chem. 2000 Nov 13;276(9):6666–6674. doi: 10.1074/jbc.M005486200. [DOI] [PubMed] [Google Scholar]
  36. Schreck R., Albermann K., Baeuerle P. A. Nuclear factor kappa B: an oxidative stress-responsive transcription factor of eukaryotic cells (a review). Free Radic Res Commun. 1992;17(4):221–237. doi: 10.3109/10715769209079515. [DOI] [PubMed] [Google Scholar]
  37. Simonini A., Moscucci M., Muller D. W., Bates E. R., Pagani F. D., Burdick M. D., Strieter R. M. IL-8 is an angiogenic factor in human coronary atherectomy tissue. Circulation. 2000 Apr 4;101(13):1519–1526. doi: 10.1161/01.cir.101.13.1519. [DOI] [PubMed] [Google Scholar]
  38. Steel D. M., Whitehead A. S. The major acute phase reactants: C-reactive protein, serum amyloid P component and serum amyloid A protein. Immunol Today. 1994 Feb;15(2):81–88. doi: 10.1016/0167-5699(94)90138-4. [DOI] [PubMed] [Google Scholar]
  39. Su B., Karin M. Mitogen-activated protein kinase cascades and regulation of gene expression. Curr Opin Immunol. 1996 Jun;8(3):402–411. doi: 10.1016/s0952-7915(96)80131-2. [DOI] [PubMed] [Google Scholar]
  40. Su S. B., Gong W., Gao J. L., Shen W., Murphy P. M., Oppenheim J. J., Wang J. M. A seven-transmembrane, G protein-coupled receptor, FPRL1, mediates the chemotactic activity of serum amyloid A for human phagocytic cells. J Exp Med. 1999 Jan 18;189(2):395–402. doi: 10.1084/jem.189.2.395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Uhlar C. M., Whitehead A. S. Serum amyloid A, the major vertebrate acute-phase reactant. Eur J Biochem. 1999 Oct;265(2):501–523. doi: 10.1046/j.1432-1327.1999.00657.x. [DOI] [PubMed] [Google Scholar]
  42. Urieli-Shoval S., Linke R. P., Matzner Y. Expression and function of serum amyloid A, a major acute-phase protein, in normal and disease states. Curr Opin Hematol. 2000 Jan;7(1):64–69. doi: 10.1097/00062752-200001000-00012. [DOI] [PubMed] [Google Scholar]
  43. Urieli-Shoval S., Meek R. L., Hanson R. H., Eriksen N., Benditt E. P. Human serum amyloid A genes are expressed in monocyte/macrophage cell lines. Am J Pathol. 1994 Sep;145(3):650–660. [PMC free article] [PubMed] [Google Scholar]
  44. Wang P., Wu P., Anthes J. C., Siegel M. I., Egan R. W., Billah M. M. Interleukin-10 inhibits interleukin-8 production in human neutrophils. Blood. 1994 May 1;83(9):2678–2683. [PubMed] [Google Scholar]
  45. Yoshimura T., Matsushima K., Oppenheim J. J., Leonard E. J. Neutrophil chemotactic factor produced by lipopolysaccharide (LPS)-stimulated human blood mononuclear leukocytes: partial characterization and separation from interleukin 1 (IL 1). J Immunol. 1987 Aug 1;139(3):788–793. [PubMed] [Google Scholar]

Articles from Mediators of Inflammation are provided here courtesy of Wiley

RESOURCES