Skip to main content
Mediators of Inflammation logoLink to Mediators of Inflammation
. 2003 Jun;12(3):147–155. doi: 10.1080/0962935031000134860

Poloxamer 407-induced atherosclerosis in mice appears to be due to lipid derangements and not due to its direct effects on endothelial cells and macrophages.

Thomas P Johnston 1, Yuai Li 1, Ahmed S Jamal 1, Daniel J Stechschulte 1, Kottarappat N Dileepan 1
PMCID: PMC1781606  PMID: 12857598

Abstract

Coronary heart disease secondary to atherosclerosis is still the leading cause of death in the US. Animal models used for elucidating the pathogenesis of this disease primarily involve rabbits and pigs. Previous studies from this laboratory have demonstrated intraperitoneal injections of poloxamer 407 (P-407) in both male and female mice will lead to hyperlipidemia and atherosclerosis, suggesting the use of this polymer to develop a mouse model of atherosclerosis. In order to understand the mechanism of P-407-induced hyperlipidemia and vascular lesion formation, we evaluated the direct effects of P-407 on endothelial cell and macrophage functions in vitro, and its in vivo effects on the oxidation of circulating lipids following long-term (4 month) administration. Our results demonstrated that incubation of P-407 with human umbilical vein endothelial cells in culture did not influence either cell proliferation or interleukin-6 and interleukin-8 production over a concentration range of 0-40 microM. In addition, nitric oxide production by macrophages was not affected by P-407 over a concentration range of 0-20 microM. Finally, we demonstrated that while P-407 could not induce the oxidation of LDL-C in vitro, long-term (4 month) administration of P-407 in mice resulted in elevated levels of oxidized lipids in the plasma. Thus, it is suggested that the formation of atherosclerotic lesions in this mouse model of atherosclerosis does not result from either direct stimulation of endothelial cells or macrophage activation by P-407. Instead, these data would support the premise that oxidation of lipids (perhaps low-density lipoprotein cholesterol) by an indirect mechanism following injection of P-407 may represent one of the mechanisms responsible for atheroma formation.

Full Text

The Full Text of this article is available as a PDF (153.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aarden L., Helle M., Boeije L., Pascual-Salcedo D., de Groot E. Differential induction of interleukin-6 production in monocytes, endothelial cells and smooth muscle cells. Eur Cytokine Netw. 1991 Mar-Apr;2(2):115–120. [PubMed] [Google Scholar]
  2. Akira S., Taga T., Kishimoto T. Interleukin-6 in biology and medicine. Adv Immunol. 1993;54:1–78. doi: 10.1016/s0065-2776(08)60532-5. [DOI] [PubMed] [Google Scholar]
  3. Anderson K. M., Castelli W. P., Levy D. Cholesterol and mortality. 30 years of follow-up from the Framingham study. JAMA. 1987 Apr 24;257(16):2176–2180. doi: 10.1001/jama.257.16.2176. [DOI] [PubMed] [Google Scholar]
  4. Atkinson T. P., Bullock J. O., Smith T. F., Mullins R. E., Hunter R. L. Ion transport mediated by copolymers composed of polyoxyethylene and polyoxypropylene. Am J Physiol. 1988 Jan;254(1 Pt 1):C20–C26. doi: 10.1152/ajpcell.1988.254.1.C20. [DOI] [PubMed] [Google Scholar]
  5. Baggiolini M., Dewald B., Moser B. Interleukin-8 and related chemotactic cytokines--CXC and CC chemokines. Adv Immunol. 1994;55:97–179. [PubMed] [Google Scholar]
  6. Breslow J. L. Mouse models of atherosclerosis. Science. 1996 May 3;272(5262):685–688. doi: 10.1126/science.272.5262.685. [DOI] [PubMed] [Google Scholar]
  7. Brown Z., Gerritsen M. E., Carley W. W., Strieter R. M., Kunkel S. L., Westwick J. Chemokine gene expression and secretion by cytokine-activated human microvascular endothelial cells. Differential regulation of monocyte chemoattractant protein-1 and interleukin-8 in response to interferon-gamma. Am J Pathol. 1994 Oct;145(4):913–921. [PMC free article] [PubMed] [Google Scholar]
  8. Dileepan K. N., Lorsbach R. B., Stechschulte D. J. Mast cell granules inhibit macrophage-mediated lysis of mastocytoma cells (P815) and nitric oxide production. J Leukoc Biol. 1993 Apr;53(4):446–453. doi: 10.1002/jlb.53.4.446. [DOI] [PubMed] [Google Scholar]
  9. Gimbrone M. A., Jr, Obin M. S., Brock A. F., Luis E. A., Hass P. E., Hébert C. A., Yip Y. K., Leung D. W., Lowe D. G., Kohr W. J. Endothelial interleukin-8: a novel inhibitor of leukocyte-endothelial interactions. Science. 1989 Dec 22;246(4937):1601–1603. doi: 10.1126/science.2688092. [DOI] [PubMed] [Google Scholar]
  10. Jehle A. B., Li Y., Stechschulte A. C., Stechschulte D. J., Dileepan K. N. Endotoxin and mast cell granule proteases synergistically activate human coronary artery endothelial cells to generate interleukin-6 and interleukin-8. J Interferon Cytokine Res. 2000 Apr;20(4):361–368. doi: 10.1089/107999000312298. [DOI] [PubMed] [Google Scholar]
  11. Johnston T. P., Baker J. C., Hall D., Jamal S., Palmer W. K., Emeson E. E. Regression of poloxamer 407-induced atherosclerotic lesions in C57BL/6 mice using atorvastatin. Atherosclerosis. 2000 Apr;149(2):303–313. doi: 10.1016/s0021-9150(99)00339-1. [DOI] [PubMed] [Google Scholar]
  12. Johnston T. P., Baker J. C., Jamal A. S., Hall D., Emeson E. E., Palmer W. K. Potential downregulation of HMG-CoA reductase after prolonged administration of P-407 in C57BL/6 mice. J Cardiovasc Pharmacol. 1999 Dec;34(6):831–842. doi: 10.1097/00005344-199912000-00010. [DOI] [PubMed] [Google Scholar]
  13. Johnston T. P., Miller S. C. Toxicological evaluation of poloxamer vehicles for intramuscular use. J Parenter Sci Technol. 1985 Mar-Apr;39(2):83–89. [PubMed] [Google Scholar]
  14. Johnston T. P., Nguyen L. B., Chu W. A., Shefer S. Potency of select statin drugs in a new mouse model of hyperlipidemia and atherosclerosis. Int J Pharm. 2001 Oct 23;229(1-2):75–86. doi: 10.1016/s0378-5173(01)00834-1. [DOI] [PubMed] [Google Scholar]
  15. Johnston T. P., Palmer W. K. Effect of poloxamer 407 on the activity of microsomal 3-hydroxy-3-methylglutaryl CoA reductase in rats. J Cardiovasc Pharmacol. 1997 May;29(5):580–585. doi: 10.1097/00005344-199705000-00003. [DOI] [PubMed] [Google Scholar]
  16. Johnston T. P., Palmer W. K. Mechanism of poloxamer 407-induced hypertriglyceridemia in the rat. Biochem Pharmacol. 1993 Sep 14;46(6):1037–1042. doi: 10.1016/0006-2952(93)90668-m. [DOI] [PubMed] [Google Scholar]
  17. Johnston Thomas P., Coker James W., Paigen Beverly J., Tawfik Ossama. Sex does not seem to influence the formation of aortic lesions in the P-407-induced mouse model of hyperlipidemia and atherosclerosis. J Cardiovasc Pharmacol. 2002 Mar;39(3):404–411. doi: 10.1097/00005344-200203000-00012. [DOI] [PubMed] [Google Scholar]
  18. Jokinen M. P., Clarkson T. B., Prichard R. W. Animal models in atherosclerosis research. Exp Mol Pathol. 1985 Feb;42(1):1–28. doi: 10.1016/0014-4800(85)90015-2. [DOI] [PubMed] [Google Scholar]
  19. Kume N., Cybulsky M. I., Gimbrone M. A., Jr Lysophosphatidylcholine, a component of atherogenic lipoproteins, induces mononuclear leukocyte adhesion molecules in cultured human and rabbit arterial endothelial cells. J Clin Invest. 1992 Sep;90(3):1138–1144. doi: 10.1172/JCI115932. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Li C., Palmer W. K., Johnston T. P. Disposition of poloxamer 407 in rats following a single intraperitoneal injection assessed using a simplified colorimetric assay. J Pharm Biomed Anal. 1996 Mar;14(5):659–665. doi: 10.1016/0731-7085(95)01621-x. [DOI] [PubMed] [Google Scholar]
  21. Li Y., Chi L., Stechschulte D. J., Dileepan K. N. Histamine-induced production of interleukin-6 and interleukin-8 by human coronary artery endothelial cells is enhanced by endotoxin and tumor necrosis factor-alpha. Microvasc Res. 2001 May;61(3):253–262. doi: 10.1006/mvre.2001.2304. [DOI] [PubMed] [Google Scholar]
  22. Li Y., Nguyen T. D., Stechschulte A. C., Stechschulte D. J., Dileepan K. N. Effect of mast cell granules on the gene expression of nitric oxide synthase and tumour necrosis factor-alpha in macrophages. Mediators Inflamm. 1998;7(5):355–361. doi: 10.1080/09629359890884. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Nash V. J., Johnston T. P., Palmer W. K. Effects of nicotinic acid on poloxamer 407-induced hyperlipidemia. Pharmacotherapy. 1996 Jan-Feb;16(1):10–15. [PubMed] [Google Scholar]
  24. Paigen B., Plump A. S., Rubin E. M. The mouse as a model for human cardiovascular disease and hyperlipidemia. Curr Opin Lipidol. 1994 Aug;5(4):258–264. doi: 10.1097/00041433-199408000-00003. [DOI] [PubMed] [Google Scholar]
  25. Palmer W. K., Emeson E. E., Johnston T. P. Poloxamer 407-induced atherogenesis in the C57BL/6 mouse. Atherosclerosis. 1998 Jan;136(1):115–123. doi: 10.1016/s0021-9150(97)00193-7. [DOI] [PubMed] [Google Scholar]
  26. Palmer W. K., Emeson E. E., Johnston T. P. The poloxamer 407-induced hyperlipidemic atherogenic animal model. Med Sci Sports Exerc. 1997 Nov;29(11):1416–1421. doi: 10.1097/00005768-199711000-00005. [DOI] [PubMed] [Google Scholar]
  27. Patel R. P., Levonen A., Crawford J. H., Darley-Usmar V. M. Mechanisms of the pro- and anti-oxidant actions of nitric oxide in atherosclerosis. Cardiovasc Res. 2000 Aug 18;47(3):465–474. doi: 10.1016/s0008-6363(00)00086-9. [DOI] [PubMed] [Google Scholar]
  28. Pec E. A., Wout Z. G., Johnston T. P. Biological activity of urease formulated in poloxamer 407 after intraperitoneal injection in the rat. J Pharm Sci. 1992 Jul;81(7):626–630. doi: 10.1002/jps.2600810707. [DOI] [PubMed] [Google Scholar]
  29. Porter J. A., Carter B. L., Johnson T. P., Palmer W. K. Effects of pravastatin on plasma lipid concentrations in poloxamer 407-induced hyperlipidemic rats. Pharmacotherapy. 1995 Jan-Feb;15(1):92–98. [PubMed] [Google Scholar]
  30. Rus H. G., Vlaicu R., Niculescu F. Interleukin-6 and interleukin-8 protein and gene expression in human arterial atherosclerotic wall. Atherosclerosis. 1996 Dec 20;127(2):263–271. doi: 10.1016/s0021-9150(96)05968-0. [DOI] [PubMed] [Google Scholar]
  31. Steinberg D., Parthasarathy S., Carew T. E., Khoo J. C., Witztum J. L. Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med. 1989 Apr 6;320(14):915–924. doi: 10.1056/NEJM198904063201407. [DOI] [PubMed] [Google Scholar]
  32. Terkeltaub R., Banka C. L., Solan J., Santoro D., Brand K., Curtiss L. K. Oxidized LDL induces monocytic cell expression of interleukin-8, a chemokine with T-lymphocyte chemotactic activity. Arterioscler Thromb. 1994 Jan;14(1):47–53. doi: 10.1161/01.atv.14.1.47. [DOI] [PubMed] [Google Scholar]
  33. Violi F., Marino R., Milite M. T., Loffredo L. Nitric oxide and its role in lipid peroxidation. Diabetes Metab Res Rev. 1999 Jul-Aug;15(4):283–288. doi: 10.1002/(sici)1520-7560(199907/08)15:4<283::aid-dmrr42>3.0.co;2-u. [DOI] [PubMed] [Google Scholar]
  34. Wang J. M., Sica A., Peri G., Walter S., Padura I. M., Libby P., Ceska M., Lindley I., Colotta F., Mantovani A. Expression of monocyte chemotactic protein and interleukin-8 by cytokine-activated human vascular smooth muscle cells. Arterioscler Thromb. 1991 Sep-Oct;11(5):1166–1174. doi: 10.1161/01.atv.11.5.1166. [DOI] [PubMed] [Google Scholar]
  35. Wout Z. G., Pec E. A., Maggiore J. A., Williams R. H., Palicharla P., Johnston T. P. Poloxamer 407-mediated changes in plasma cholesterol and triglycerides following intraperitoneal injection to rats. J Parenter Sci Technol. 1992 Nov-Dec;46(6):192–200. [PubMed] [Google Scholar]

Articles from Mediators of Inflammation are provided here courtesy of Wiley

RESOURCES