Skip to main content
Mediators of Inflammation logoLink to Mediators of Inflammation
. 2002 Apr;11(2):99–104. doi: 10.1080/09629350220131953

Antitumor effect of Bothrops jararaca venom.

Reinaldo J da Silva 1, Márcia G da Silva 1, Lízia C Vilela 1, Denise Fecchio 1
PMCID: PMC1781646  PMID: 12061431

Abstract

Many experimental studies have been carried out using snake venoms for the treatment of animal tumors, with controversial results. While some authors have reported an antitumor effect of treatment with specific snake venom fractions, others have reported no effects after this treatment. The aim of this study was to evaluate the effect of Bothrops jararaca venom (BjV) on Ehrlich ascites tumor (EAT) cells in vivo and in vitro. In the in vivo study, Swiss mice were inoculated with EAT cells by the intraperitoneal (i.p.) route and treated with BjV venom (0.4 mg/kg, i.p.), on the 1st, 4th, 7th, 10th, and 13th days. Mice were evaluated for total and differential cells number on the 2nd, 5th, 8th, 11th and 14th days. The survival time was also evaluated after 60 days of tumor growth. In the in vitro study, EAT and normal peritoneal cells were cultivated in the presence of different BjV concentrations (2.5, 5.0, 10.0, 20.0, 40.0, and 80 microg) and viability was verified after 3, 6, 12 and 24 h of cultivation. Results were analyzed statistically by the Kruskal-Wallis and Tukey tests at the 5% level of significance. It was observed that in vivo treatment with BjV induced tumor growth inhibition, increased animal survival time, decreased mortality, increased the influx of polymorphonuclear leukocytes on the early stages of tumor growth, and did not affect the mononuclear cells number. In vitro treatment with BjV produced a dose-dependent toxic effect on EAT and peritoneal cells, with higher effects against peritoneal cells. Taken together, our results demonstrate that BjV has an important antitumor effect. This is the first report showing this in vivo effect for this venom.

Full Text

The Full Text of this article is available as a PDF (268.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe Y., Shimoyama Y., Munakata H., Ito J., Nagata N., Ohtsuki K. Characterization of an apoptosis-inducing factor in Habu snake venom as a glycyrrhizin (GL)-binding protein potently inhibited by GL in vitro. Biol Pharm Bull. 1998 Sep;21(9):924–927. doi: 10.1248/bpb.21.924. [DOI] [PubMed] [Google Scholar]
  2. Araki S., Ishida T., Yamamoto T., Kaji K., Hayashi H. Induction of apoptosis by hemorrhagic snake venom in vascular endothelial cells. Biochem Biophys Res Commun. 1993 Jan 15;190(1):148–153. doi: 10.1006/bbrc.1993.1023. [DOI] [PubMed] [Google Scholar]
  3. Basavarajappa B. S., Gowda T. V. Comparative characterization of two toxic phospholipases A2 from Indian cobra (Naja naja naja) venom. Toxicon. 1992 Oct;30(10):1227–1238. doi: 10.1016/0041-0101(92)90439-c. [DOI] [PubMed] [Google Scholar]
  4. Borkow G., Chaim-Matyas A., Ovadia M. Binding of cytotoxin P4 from Naja nigricollis nigricollis to B16F10 melanoma and WEHI-3B leukemia cells. FEMS Microbiol Immunol. 1992 Sep;5(1-3):139–145. doi: 10.1111/j.1574-6968.1992.tb05896.x. [DOI] [PubMed] [Google Scholar]
  5. Braganca B. M. Biologically active components of cobra venom in relation to cancer research. Indian J Med Res. 1976 Aug;64(8):1197–1207. [PubMed] [Google Scholar]
  6. Braganca B. M., Patel N. T., Badrinath P. G. Isolation and properties of a cobra venom factor selectively cytotoxic to Yoshida sarcoma cells. Biochim Biophys Acta. 1967 Apr 25;136(3):508–520. doi: 10.1016/0304-4165(67)90009-8. [DOI] [PubMed] [Google Scholar]
  7. Chaim-Matyas A., Borkow G., Ovadia M. Isolation and characterization of a cytotoxin P4 from the venom of Naja nigricollis nigricollis preferentially active on tumor cells. Biochem Int. 1991 Jun;24(3):415–421. [PubMed] [Google Scholar]
  8. Chaim-Matyas A., Ovadia M. Cytotoxic activity of various snake venoms on melanoma, B16F10 and chondrosarcoma. Life Sci. 1987 Apr 20;40(16):1601–1607. doi: 10.1016/0024-3205(87)90126-3. [DOI] [PubMed] [Google Scholar]
  9. Gallagher G., Stimson W. H., Findlay J., al-Azzawi F. Interleukin-6 enhances the induction of human lymphokine-activated killer cells. Cancer Immunol Immunother. 1990;31(1):49–52. doi: 10.1007/BF01742495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gillo L. Les venins de serpents, source d'enzymes anticancéreux. I. Aspects biochimiaues fondamentaux du problème. Mem Inst Butantan. 1966;33(3):933–936. [PubMed] [Google Scholar]
  11. Gutiérrez J. M., Cerdas L. Mecanismo de acción de miotoxinas aisladas de venenos de serpientes. Rev Biol Trop. 1984 Nov;32(2):213–222. [PubMed] [Google Scholar]
  12. Iho S., Shau H. Y., Golub S. H. Characteristics of interleukin-6-enhanced lymphokine-activated killer cell function. Cell Immunol. 1991 Jun;135(1):66–77. doi: 10.1016/0008-8749(91)90254-9. [DOI] [PubMed] [Google Scholar]
  13. Jablonska E., Jablonski J., Holownia A. Role of neutrophils in release of some cytokines and their soluble receptors. Immunol Lett. 1999 Dec 1;70(3):191–197. doi: 10.1016/s0165-2478(99)00148-0. [DOI] [PubMed] [Google Scholar]
  14. Kitahara M., Kishimoto S., Hirano T., Kishimoto T., Okada M. The in vivo anti-tumor effect of human recombinant interleukin-6. Jpn J Cancer Res. 1990 Oct;81(10):1032–1038. doi: 10.1111/j.1349-7006.1990.tb03342.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Leung W. W., Keung W. M., Kong Y. C. The cytolytic effect of cobra cardiotoxin on Ehrlich ascites tumor cells and its inhibition by Ca2+. Naunyn Schmiedebergs Arch Pharmacol. 1976;292(2):193–198. doi: 10.1007/BF00498592. [DOI] [PubMed] [Google Scholar]
  16. Li P. L. Cytotoxicity of cobra (Naja naja kaouthia) venom on rabbit red blood cells and S-180 tumor cells in the presence of tetracaine, lidocaine and procaine. Z Naturforsch C. 1980 Mar-Apr;35(3-4):268–272. doi: 10.1515/znc-1980-3-415. [DOI] [PubMed] [Google Scholar]
  17. Luger T. A., Krutmann J., Kirnbauer R., Urbanski A., Schwarz T., Klappacher G., Köck A., Micksche M., Malejczyk J., Schauer E. IFN-beta 2/IL-6 augments the activity of human natural killer cells. J Immunol. 1989 Aug 15;143(4):1206–1209. [PubMed] [Google Scholar]
  18. Markland F. S., Jr Antitumor action of crotalase, a defibrinogenating snake venom enzyme. Semin Thromb Hemost. 1986 Oct;12(4):284–290. doi: 10.1055/s-2007-1003568. [DOI] [PubMed] [Google Scholar]
  19. Masuda S., Araki S., Yamamoto T., Kaji K., Hayashi H. Purification of a vascular apoptosis-inducing factor from hemorrhagic snake venom. Biochem Biophys Res Commun. 1997 Jun 9;235(1):59–63. doi: 10.1006/bbrc.1997.6728. [DOI] [PubMed] [Google Scholar]
  20. Masuda S., Hayashi H., Araki S. Two vascular apoptosis-inducing proteins from snake venom are members of the metalloprotease/disintegrin family. Eur J Biochem. 1998 Apr 1;253(1):36–41. doi: 10.1046/j.1432-1327.1998.2530036.x. [DOI] [PubMed] [Google Scholar]
  21. Maung-Maung-Thwin, Khin-Mee-Mee, Mi-Mi-Kyin, Thein-Than Kinetics of envenomation with Russell's viper (Vipera russelli) venom and of antivenom use in mice. Toxicon. 1988;26(4):373–378. doi: 10.1016/0041-0101(88)90005-0. [DOI] [PubMed] [Google Scholar]
  22. Okada M., Kitahara M., Kishimoto S., Matsuda T., Hirano T., Kishimoto T. IL-6/BSF-2 functions as a killer helper factor in the in vitro induction of cytotoxic T cells. J Immunol. 1988 Sep 1;141(5):1543–1549. [PubMed] [Google Scholar]
  23. Oron U., Chaim-Matyas A., Ovadia M. Histopathological changes in WEHI-3B leukemia cells following intoxication by cytotoxin P4 from Naja nigricollis nigricollis venom. Toxicon. 1992 Sep;30(9):1122–1126. doi: 10.1016/0041-0101(92)90058-d. [DOI] [PubMed] [Google Scholar]
  24. Patel T. N., Braganca B. M., Bellare R. A. Changes produced by cobra venom cytotoxin on the morphology of Yoshida sarcoma cells. Exp Cell Res. 1969 Oct;57(2):289–297. doi: 10.1016/0014-4827(69)90152-9. [DOI] [PubMed] [Google Scholar]
  25. Pessatti M., Fontana J. D., Furtado M. F., Guimãraes M. F., Zanette L. R., Costa W. T., Baron M. Screening of Bothrops snake venoms for L-amino acid oxidase activity. Appl Biochem Biotechnol. 1995 Spring;51-52:197–210. doi: 10.1007/BF02933424. [DOI] [PubMed] [Google Scholar]
  26. Potselueva M. M., Pustovidko A. V., Alabin V. S., Evtodienko Iu V. Generatsiia reaktivnykh form kisloroda polimorfnoiadernymi leikotsiamiv protsesse razvitiia gepatomy v briushnoi polosti zhivotnykh. Tsitologiia. 1999;41(2):162–166. [PubMed] [Google Scholar]
  27. Rabinovitch M., DeStefano M. J. Macrophage spreading in vitro. I. Inducers of spreading. Exp Cell Res. 1973 Mar 15;77(1):323–334. doi: 10.1016/0014-4827(73)90584-3. [DOI] [PubMed] [Google Scholar]
  28. Raibekas A. A., Massey V. Primary structure of the snake venom L-amino acid oxidase shows high homology with the mouse B cell interleukin 4-induced Fig1 protein. Biochem Biophys Res Commun. 1998 Jul 30;248(3):476–478. doi: 10.1006/bbrc.1998.9024. [DOI] [PubMed] [Google Scholar]
  29. Russel S. W., Doe W. F., Cochrane C. G. Number of macrophages and distribution of mitotic activity in regressing and progressing Moloney sarcomas. J Immunol. 1976 Jan;116(1):164–166. [PubMed] [Google Scholar]
  30. Russell S. W., Doe W. F., McIntosh A. T. Functional characterization of a stable, noncytolytic stage of macrophage activation in tumors. J Exp Med. 1977 Dec 1;146(6):1511–1520. doi: 10.1084/jem.146.6.1511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sezzi M. L., Bellelli L., Nista A. Peritoneal macrophages and neoplastic cells. I. Macrophages activity induced by heavily-irradiated or heat-killed cancer cells. Oncology. 1972;26(6):529–539. doi: 10.1159/000224707. [DOI] [PubMed] [Google Scholar]
  32. Smyth M. J., Ortaldo J. R., Bere W., Yagita H., Okumura K., Young H. A. IL-2 and IL-6 synergize to augment the pore-forming protein gene expression and cytotoxic potential of human peripheral blood T cells. J Immunol. 1990 Aug 15;145(4):1159–1166. [PubMed] [Google Scholar]
  33. Strizhkov B. N., Blishchenko EYu, Satpaev D. K., Karelin A. A. Both neurotoxin II from venom of Naja naja oxiana and its endogenous analogue induce apoptosis in tumor cells. FEBS Lett. 1994 Feb 28;340(1-2):22–24. doi: 10.1016/0014-5793(94)80165-7. [DOI] [PubMed] [Google Scholar]
  34. Suhr S. M., Kim D. S. Comparison of the apoptotic pathways induced by L-amino acid oxidase and hydrogen peroxide. J Biochem. 1999 Feb;125(2):305–309. doi: 10.1093/oxfordjournals.jbchem.a022287. [DOI] [PubMed] [Google Scholar]
  35. Suhr S. M., Kim D. S. Identification of the snake venom substance that induces apoptosis. Biochem Biophys Res Commun. 1996 Jul 5;224(1):134–139. doi: 10.1006/bbrc.1996.0996. [DOI] [PubMed] [Google Scholar]
  36. Suzuki K., Nakamura M., Hatanaka Y., Kayanoki Y., Tatsumi H., Taniguchi N. Induction of apoptotic cell death in human endothelial cells treated with snake venom: implication of intracellular reactive oxygen species and protective effects of glutathione and superoxide dismutases. J Biochem. 1997 Dec;122(6):1260–1264. doi: 10.1093/oxfordjournals.jbchem.a021890. [DOI] [PubMed] [Google Scholar]
  37. Tan N. H., Ponnudurai G. A comparative study of the biological properties of some venoms of snakes of the genus Bothrops (American lance-headed viper). Comp Biochem Physiol B. 1991;100(2):361–365. doi: 10.1016/0305-0491(91)90387-s. [DOI] [PubMed] [Google Scholar]
  38. Tanigawa M., Maruyama M., Sugiki M., Shimaya K., Anai K., Mihara H. Clearance and distribution of a haemorrhagic factor purified from Bothrops jararaca venom in mice. Toxicon. 1994 May;32(5):583–593. doi: 10.1016/0041-0101(94)90206-2. [DOI] [PubMed] [Google Scholar]
  39. Torii S., Naito M., Tsuruo T. Apoxin I, a novel apoptosis-inducing factor with L-amino acid oxidase activity purified from Western diamondback rattlesnake venom. J Biol Chem. 1997 Apr 4;272(14):9539–9542. doi: 10.1074/jbc.272.14.9539. [DOI] [PubMed] [Google Scholar]
  40. Wirtheimer C., Gillo L. Les venins de serpents, source d'enzymes anticancéreux. II. Etude expérimentale. Mem Inst Butantan. 1966;33(3):937–942. [PubMed] [Google Scholar]
  41. Yoshikura H., Ogawa H., Osaka A., Omori-Sato T. Action of Trimeresurus flavoviridis venom and the partially purified hemorrhagic principles on animal cells cultivated in vitro. Toxicon. 1966 Nov;4(3):183–190. doi: 10.1016/0041-0101(66)90048-1. [DOI] [PubMed] [Google Scholar]
  42. Zhong X. Y., Liu G. F., Wang Q. C. [Purification and anticancer activity of cytotoxin-14 from venom of Naja naja atra]. Zhongguo Yao Li Xue Bao. 1993 May;14(3):279–282. [PubMed] [Google Scholar]

Articles from Mediators of Inflammation are provided here courtesy of Wiley

RESOURCES