Skip to main content
Mediators of Inflammation logoLink to Mediators of Inflammation
. 2002 Apr;11(2):113–119. doi: 10.1080/09629350220131971

T cells expressing the gammadelta receptor are essential for Th2-mediated inflammation in patients with acute exacerbation of asthma.

Agnès Hamzaoui 1, Alice Kahan 1, Khaled Ayed 1, Kamel Hamzaoui 1
PMCID: PMC1781649  PMID: 12061423

Abstract

OBJECTIVE: T lymphocytes have a central regulatory role in the pathogenesis of asthma. The objective of this study was to characterize immunologically the activation stage of asthma and the functional profile of lymphocytes from induced sputum, with particular emphasis on gammadelta T cells. METHODS: Induced sputum was collected from 10 patients with acute exacerbation of asthma, and from healthy controls. The expression of activation markers on freshly isolated induced sputum lymphocytes and T-cell subsets was analyzed by double immunofluorescent staining and flow cytometry. Fas ligand (FasL) was determined by reverse transcriptase-polymerase chain reaction analysis. The phenotype of gammadelta T-cell subpopulations was tested by A13 and BB3 monoclonal antibodies. In this context, the functional profile of gammadelta T cells was tested in a chromium releasing test. RESULTS: A significantly decreased proportion of alphabeta T cells and an increased proportion of gammadelta T cells, CD56+ cells and CD8+ gammadelta T cells were found in asthma patients compared with healthy controls. In asthmatic patients, there is a significantly increased proportion of T cells expressing CD69 and CD25 antigen. After stimulation of gammadelta T cells, an increased expression of intracellular tumour necrosis factor-alpha, interleukin (IL)-4 and IL10 cytokines were found at higher levels than controls. Interferon-gamma was observed at similar levels in asthma patients and healthy controls. Freshly isolated T-cell receptor (TCR) gammadelta+ cells exhibited an increased percentage of FasL in our patient group. FasL mRNA was detected in TCR gammadelta+ cells before and after IL2 stimulation. TCR gammadelta+ cells were cytotoxic against the K562 cell line. This natural killer activity was mediated by the A13-positive subpopulation. CONCLUSION: The presence of cytokines producing gammadelta cells in induced sputum of asthmatic patients is consistent with regulatory activities. These cells display also cytotoxic function.

Full Text

The Full Text of this article is available as a PDF (207.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agostini C., Chilosi M., Zambello R., Trentin L., Semenzato G. Pulmonary immune cells in health and disease: lymphocytes. Eur Respir J. 1993 Oct;6(9):1378–1401. [PubMed] [Google Scholar]
  2. Asahara H., Hasumuna T., Kobata T., Yagita H., Okumura K., Inoue H., Gay S., Sumida T., Nishioka K. Expression of Fas antigen and Fas ligand in the rheumatoid synovial tissue. Clin Immunol Immunopathol. 1996 Oct;81(1):27–34. doi: 10.1006/clin.1996.0153. [DOI] [PubMed] [Google Scholar]
  3. Baron J. L., Madri J. A., Ruddle N. H., Hashim G., Janeway C. A., Jr Surface expression of alpha 4 integrin by CD4 T cells is required for their entry into brain parenchyma. J Exp Med. 1993 Jan 1;177(1):57–68. doi: 10.1084/jem.177.1.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bradley B. L., Azzawi M., Jacobson M., Assoufi B., Collins J. V., Irani A. M., Schwartz L. B., Durham S. R., Jeffery P. K., Kay A. B. Eosinophils, T-lymphocytes, mast cells, neutrophils, and macrophages in bronchial biopsy specimens from atopic subjects with asthma: comparison with biopsy specimens from atopic subjects without asthma and normal control subjects and relationship to bronchial hyperresponsiveness. J Allergy Clin Immunol. 1991 Oct;88(4):661–674. doi: 10.1016/0091-6749(91)90160-p. [DOI] [PubMed] [Google Scholar]
  5. Corrigan C. J., Kay A. B. T cells and eosinophils in the pathogenesis of asthma. Immunol Today. 1992 Dec;13(12):501–507. doi: 10.1016/0167-5699(92)90026-4. [DOI] [PubMed] [Google Scholar]
  6. Fajac I., Roisman G. L., Lacronique J., Polla B. S., Dusser D. J. Bronchial gamma delta T-lymphocytes and expression of heat shock proteins in mild asthma. Eur Respir J. 1997 Mar;10(3):633–638. [PubMed] [Google Scholar]
  7. Fajac I., Tazi A., Hance A. J., Bouchonnet F., Riquet M., Battesti J. P., Soler P. Lymphocytes infiltrating normal human lung and lung carcinomas rarely express gamma delta T cell antigen receptors. Clin Exp Immunol. 1992 Jan;87(1):127–131. doi: 10.1111/j.1365-2249.1992.tb06425.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Groh V., Porcelli S., Fabbi M., Lanier L. L., Picker L. J., Anderson T., Warnke R. A., Bhan A. K., Strominger J. L., Brenner M. B. Human lymphocytes bearing T cell receptor gamma/delta are phenotypically diverse and evenly distributed throughout the lymphoid system. J Exp Med. 1989 Apr 1;169(4):1277–1294. doi: 10.1084/jem.169.4.1277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Grossi C. E., Ciccone E., Migone N., Bottino C., Zarcone D., Mingari M. C., Ferrini S., Tambussi G., Viale O., Casorati G. Human T cells expressing the gamma/delta T-cell receptor (TcR-1): C gamma 1- and C gamma 2-encoded forms of the receptor correlate with distinctive morphology, cytoskeletal organization, and growth characteristics. Proc Natl Acad Sci U S A. 1989 Mar;86(5):1619–1623. doi: 10.1073/pnas.86.5.1619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hamzaoui K., Hamzaoui A., Hentati F., Kahan A., Ayed K., Chabbou A., Ben Hamida M., Hamza M. Phenotype and functional profile of T cells expressing gamma delta receptor from patients with active Behçet's disease. J Rheumatol. 1994 Dec;21(12):2301–2306. [PubMed] [Google Scholar]
  11. Hayday A. C., Roberts S., Ramsburg E. gammadelta cells and the regulation of mucosal immune responses. Am J Respir Crit Care Med. 2000 Oct;162(4 Pt 2):S161–S163. doi: 10.1164/ajrccm.162.supplement_3.15tac4. [DOI] [PubMed] [Google Scholar]
  12. Korsgren M., Persson C. G., Sundler F., Bjerke T., Hansson T., Chambers B. J., Hong S., Van Kaer L., Ljunggren H. G., Korsgren O. Natural killer cells determine development of allergen-induced eosinophilic airway inflammation in mice. J Exp Med. 1999 Feb 1;189(3):553–562. doi: 10.1084/jem.189.3.553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Meliconi R., Pitzalis C., Kingsley G. H., Panayi G. S. Gamma/delta T cells and their subpopulations in blood and synovial fluid from rheumatoid arthritis and spondyloarthritis. Clin Immunol Immunopathol. 1991 Apr;59(1):165–172. doi: 10.1016/0090-1229(91)90090-w. [DOI] [PubMed] [Google Scholar]
  14. Modlin R. L., Pirmez C., Hofman F. M., Torigian V., Uyemura K., Rea T. H., Bloom B. R., Brenner M. B. Lymphocytes bearing antigen-specific gamma delta T-cell receptors accumulate in human infectious disease lesions. Nature. 1989 Jun 15;339(6225):544–548. doi: 10.1038/339544a0. [DOI] [PubMed] [Google Scholar]
  15. Molfino N. A., Doherty P. J., Suurmann I. L., Yang S. X., Kesten S., Chapman K. R., Slutsky A. S. Analysis of the T cell receptor Vgamma region gene repertoire in bronchoalveolar lavage (BAL) and peripheral blood of atopic asthmatics and healthy subjects. Clin Exp Immunol. 1996 Apr;104(1):144–153. doi: 10.1046/j.1365-2249.1996.d01-645.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Moroda T., Iiai T., Suzuki S., Tsukahara A., Tada T., Nose M., Hatakeyama K., Seki S., Takeda K., Watanabe H. Autologous killing by a population of intermediate T-cell receptor cells and its NK1.1+ and NK1.1- subsets, using Fas ligand/Fas molecules. Immunology. 1997 Jun;91(2):219–226. doi: 10.1046/j.1365-2567.1997.00240.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Nakazawa T., Agematsu K., Yabuhara A. Later development of Fas ligand-mediated cytotoxicity as compared with granule-mediated cytotoxicity during the maturation of natural killer cells. Immunology. 1997 Oct;92(2):180–187. doi: 10.1046/j.1365-2567.1997.00343.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Okuda M. Functional heterogeneity of airway mast cells. Allergy. 1999;54 (Suppl 57):50–62. doi: 10.1111/j.1398-9995.1999.tb04406.x. [DOI] [PubMed] [Google Scholar]
  19. Pawankar R. U., Okuda M., Suzuki K., Okumura K., Ra C. Phenotypic and molecular characteristics of nasal mucosal gamma delta T cells in allergic and infectious rhinitis. Am J Respir Crit Care Med. 1996 May;153(5):1655–1665. doi: 10.1164/ajrccm.153.5.8630617. [DOI] [PubMed] [Google Scholar]
  20. Res P., Thole J., de Vries R. Heat-shock proteins and autoimmunity in humans. Springer Semin Immunopathol. 1991;13(1):81–98. doi: 10.1007/BF01225280. [DOI] [PubMed] [Google Scholar]
  21. Robinson D., Hamid Q., Bentley A., Ying S., Kay A. B., Durham S. R. Activation of CD4+ T cells, increased TH2-type cytokine mRNA expression, and eosinophil recruitment in bronchoalveolar lavage after allergen inhalation challenge in patients with atopic asthma. J Allergy Clin Immunol. 1993 Aug;92(2):313–324. doi: 10.1016/0091-6749(93)90175-f. [DOI] [PubMed] [Google Scholar]
  22. Spinozzi F., Agea E., Bistoni O., Forenza N., Monaco A., Bassotti G., Nicoletti I., Riccardi C., Grignani F., Bertotto A. Increased allergen-specific, steroid-sensitive gamma delta T cells in bronchoalveolar lavage fluid from patients with asthma. Ann Intern Med. 1996 Jan 15;124(2):223–227. doi: 10.7326/0003-4819-124-2-199601150-00005. [DOI] [PubMed] [Google Scholar]
  23. Street N. E., Mosmann T. R. Functional diversity of T lymphocytes due to secretion of different cytokine patterns. FASEB J. 1991 Feb;5(2):171–177. doi: 10.1096/fasebj.5.2.1825981. [DOI] [PubMed] [Google Scholar]
  24. Testi R., D'Ambrosio D., De Maria R., Santoni A. The CD69 receptor: a multipurpose cell-surface trigger for hematopoietic cells. Immunol Today. 1994 Oct;15(10):479–483. doi: 10.1016/0167-5699(94)90193-7. [DOI] [PubMed] [Google Scholar]
  25. Wahlström J., Dahlén B., Ihre E., Wigzell H., Grunewald J., Eklund A. Selective CD8+ T cells accumulate in the lungs of patients with allergic asthma after allergen bronchoprovocation. Clin Exp Immunol. 1998 Apr;112(1):1–9. doi: 10.1046/j.1365-2249.1998.00544.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Walker C., Kaegi M. K., Braun P., Blaser K. Activated T cells and eosinophilia in bronchoalveolar lavages from subjects with asthma correlated with disease severity. J Allergy Clin Immunol. 1991 Dec;88(6):935–942. doi: 10.1016/0091-6749(91)90251-i. [DOI] [PubMed] [Google Scholar]
  27. Yamaguchi E., Itoh A., Furuya K., Hizawa N., Ohnuma N., Kodama N., Kojima J., Kawakami Y. Reduced expression of the alphabeta T-cell antigen receptor by alveolar T-cells. Eur Respir J. 1999 Apr;13(4):814–819. doi: 10.1034/j.1399-3003.1999.13d20.x. [DOI] [PubMed] [Google Scholar]
  28. Yamaguchi E., Okazaki N., Itoh A., Abe S., Kawakami Y. Modulation of accessory molecules on lung T cells. Chest. 1990 Jun;97(6):1393–1400. doi: 10.1378/chest.97.6.1393. [DOI] [PubMed] [Google Scholar]
  29. Zuany-Amorim C., Ruffié C., Hailé S., Vargaftig B. B., Pereira P., Pretolani M. Requirement for gammadelta T cells in allergic airway inflammation. Science. 1998 May 22;280(5367):1265–1267. doi: 10.1126/science.280.5367.1265. [DOI] [PubMed] [Google Scholar]

Articles from Mediators of Inflammation are provided here courtesy of Wiley

RESOURCES