Skip to main content
Mediators of Inflammation logoLink to Mediators of Inflammation
. 2002 Apr;11(2):121–128. doi: 10.1080/09629350220131980

Increments in cytokines and matrix metalloproteinases in skeletal muscle after injection of tissue-damaging toxins from the venom of the snake Bothrops asper.

Alexandra Rucavado 1, Teresa Escalante 1, Catarina F P Teixeira 1, Cristina María Fernándes 1, Cecilia Diaz 1, José María Gutiérrez 1
PMCID: PMC1781651  PMID: 12061424

Abstract

Envenomations by the snake Bothrops asper are characterized by prominent local tissue damage (i.e. myonecrosis), blistering, hemorrhage and edema. Various phospholipases A2 and metalloproteinases that induce local pathological alterations have been purified from this venom. Since these toxins induce a conspicuous inflammatory response, it has been hypothesized that inflammatory mediators may contribute to the local pathological alterations described. This study evaluated the local production of cytokines and matrix metalloproteinases (MMPs) as a consequence of intramuscular injections of an Asp-49 myotoxic phospholipase A2 (myotoxin III (MT-III)) and a P-I type hemorrhagic metalloproteinase (BaP1) isolated from B. asper venom. Both enzymes induced prominent tissue alterations and conspicuous increments in interleukin (IL)-1beta, IL-6 and a number of MMPs, especially gelatinase MMP-9, rapidly after injection. In contrast, no increments in tumor necrosis factor-alpha (TNF-alpha) and interferon-gamma were detected. In agreement, MT-III and BaP1 did not induce the synthesis of TNF-alpha by resident peritoneal macrophages in vitro. Despite the conspicuous expression of latent forms of MMPs in muscle, evidenced by zymography, there were no increments in activated MMP-2 and only a small increase in activated MMP-9, as detected by a functional enzymatic assay. This suggests that MMP activity was regulated by a highly controlled activation of latent forms and, probably, by a concomitant synthesis of MMP inhibitors. Since no hemorrhage nor dermonecrosis were observed after injection of MT-III, despite a prominent increase in MMP expression, and since inflammatory exudate did not enhance hemorrhage induced by BaP1, it is suggested that endogenous MMPs released in the tissue are not responsible for the dermonecrosis and hemorrhage characteristic of B. asper envenomation. Moreover, pretreatment of mice with the peptidomimetic MMP inhibitor batimastat did not reduce myotoxic nor edema-forming activities of MT-III, suggesting that MMPs do not play a prominent role in the pathogenesis of these effects in this experimental model. It is concluded that MT-III and BaP1 induce a local inflammatory response associated with the synthesis of IL-1beta, IL-6 and MMPs. MMPs do not seem to play a prominent role in the acute local pathological alterations induced by these toxins in this experimental model.

Full Text

The Full Text of this article is available as a PDF (390.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Austin L., Burgess A. W. Stimulation of myoblast proliferation in culture by leukaemia inhibitory factor and other cytokines. J Neurol Sci. 1991 Feb;101(2):193–197. doi: 10.1016/0022-510x(91)90045-9. [DOI] [PubMed] [Google Scholar]
  2. Avila-Agüero M. L., París M. M., Hu S., Peterson P. K., Gutiérrez J. M., Lomonte B., Faingezicht I., Snakebite Study Group Systemic cytokine response in children bitten by snakes in Costa Rica. Pediatr Emerg Care. 2001 Dec;17(6):425–429. doi: 10.1097/00006565-200112000-00006. [DOI] [PubMed] [Google Scholar]
  3. Barros S. F., Friedlanskaia I., Petricevich V. L., Kipnis T. L. Local inflammation, lethality and cytokine release in mice injected with Bothrops atrox venom. Mediators Inflamm. 1998;7(5):339–346. doi: 10.1080/09629359890866. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Borish L., Rosenbaum R., McDonald B., Rosenwasser L. J. Recombinant interleukin-1 beta interacts with high-affinity receptors to activate neutrophil leukotriene B4 synthesis. Inflammation. 1990 Apr;14(2):151–162. doi: 10.1007/BF00917454. [DOI] [PubMed] [Google Scholar]
  5. Chacur M., Picolo G., Gutiérrez J. M., Teixeira C. F., Cury Y. Pharmacological modulation of hyperalgesia induced by Bothrops asper (terciopelo) snake venom. Toxicon. 2001 Aug;39(8):1173–1181. doi: 10.1016/s0041-0101(00)00254-3. [DOI] [PubMed] [Google Scholar]
  6. Chaves F., Barboza M., Gutiérrez J. M. Pharmacological study of edema induced by venom of the snake Bothrops asper (terciopelo) in mice. Toxicon. 1995 Jan;33(1):31–39. doi: 10.1016/0041-0101(94)00135-u. [DOI] [PubMed] [Google Scholar]
  7. Chaves F., León G., Alvarado V. H., Gutiérrez J. M. Pharmacological modulation of edema induced by Lys-49 and Asp-49 myotoxic phospholipases A2 isolated from the venom of the snake Bothrops asper (terciopelo). Toxicon. 1998 Dec;36(12):1861–1869. doi: 10.1016/s0041-0101(98)00107-x. [DOI] [PubMed] [Google Scholar]
  8. Clissa P. B., Laing G. D., Theakston R. D., Mota I., Taylor M. J., Moura-da-Silva A. M. The effect of jararhagin, a metalloproteinase from Bothrops jararaca venom, on pro-inflammatory cytokines released by murine peritoneal adherent cells. Toxicon. 2001 Oct;39(10):1567–1573. doi: 10.1016/s0041-0101(01)00131-3. [DOI] [PubMed] [Google Scholar]
  9. Dinarello C. A. The proinflammatory cytokines interleukin-1 and tumor necrosis factor and treatment of the septic shock syndrome. J Infect Dis. 1991 Jun;163(6):1177–1184. doi: 10.1093/infdis/163.6.1177. [DOI] [PubMed] [Google Scholar]
  10. Eccles S. A., Box G. M., Court W. J., Bone E. A., Thomas W., Brown P. D. Control of lymphatic and hematogenous metastasis of a rat mammary carcinoma by the matrix metalloproteinase inhibitor batimastat (BB-94). Cancer Res. 1996 Jun 15;56(12):2815–2822. [PubMed] [Google Scholar]
  11. Escalante T., Franceschi A., Rucavado A., Gutiérrez J. M. Effectiveness of batimastat, a synthetic inhibitor of matrix metalloproteinases, in neutralizing local tissue damage induced by BaP1, a hemorrhagic metalloproteinase from the venom of the snake bothrops asper. Biochem Pharmacol. 2000 Jul 15;60(2):269–274. doi: 10.1016/s0006-2952(00)00302-6. [DOI] [PubMed] [Google Scholar]
  12. Gasche Y., Fujimura M., Morita-Fujimura Y., Copin J. C., Kawase M., Massengale J., Chan P. H. Early appearance of activated matrix metalloproteinase-9 after focal cerebral ischemia in mice: a possible role in blood-brain barrier dysfunction. J Cereb Blood Flow Metab. 1999 Sep;19(9):1020–1028. doi: 10.1097/00004647-199909000-00010. [DOI] [PubMed] [Google Scholar]
  13. Gibbs D. F., Warner R. L., Weiss S. J., Johnson K. J., Varani J. Characterization of matrix metalloproteinases produced by rat alveolar macrophages. Am J Respir Cell Mol Biol. 1999 Jun;20(6):1136–1144. doi: 10.1165/ajrcmb.20.6.3483. [DOI] [PubMed] [Google Scholar]
  14. Gutiérrez J. M., Arroyo O., Bolaños R. Mionecrosis, hemorragia y edema inducidos por el veneno de Bothrops asper en ratón blanco. Toxicon. 1980;18(5-6):603–610. doi: 10.1016/0041-0101(80)90087-2. [DOI] [PubMed] [Google Scholar]
  15. Gutiérrez J. M., Gené J. A., Rojas G., Cerdas L. Neutralization of proteolytic and hemorrhagic activities of Costa Rican snake venoms by a polyvalent antivenom. Toxicon. 1985;23(6):887–893. doi: 10.1016/0041-0101(85)90380-0. [DOI] [PubMed] [Google Scholar]
  16. Gutiérrez J. M., Lomonte B. Phospholipase A2 myotoxins from Bothrops snake venoms. Toxicon. 1995 Nov;33(11):1405–1424. doi: 10.1016/0041-0101(95)00085-z. [DOI] [PubMed] [Google Scholar]
  17. Gutiérrez J. M., Ownby C. L., Odell G. V. Pathogenesis of myonecrosis induced by crude venom and a myotoxin of Bothrops asper. Exp Mol Pathol. 1984 Jun;40(3):367–379. doi: 10.1016/0014-4800(84)90054-6. [DOI] [PubMed] [Google Scholar]
  18. Gutiérrez J. M., Romero M., Díaz C., Borkow G., Ovadia M. Isolation and characterization of a metalloproteinase with weak hemorrhagic activity from the venom of the snake Bothrops asper (terciopelo). Toxicon. 1995 Jan;33(1):19–29. doi: 10.1016/0041-0101(94)00138-x. [DOI] [PubMed] [Google Scholar]
  19. Herron G. S., Banda M. J., Clark E. J., Gavrilovic J., Werb Z. Secretion of metalloproteinases by stimulated capillary endothelial cells. II. Expression of collagenase and stromelysin activities is regulated by endogenous inhibitors. J Biol Chem. 1986 Feb 25;261(6):2814–2818. [PubMed] [Google Scholar]
  20. Kaiser I. I., Gutierrez J. M., Plummer D., Aird S. D., Odell G. V. The amino acid sequence of a myotoxic phospholipase from the venom of Bothrops asper. Arch Biochem Biophys. 1990 May 1;278(2):319–325. doi: 10.1016/0003-9861(90)90266-2. [DOI] [PubMed] [Google Scholar]
  21. Kherif S., Lafuma C., Dehaupas M., Lachkar S., Fournier J. G., Verdière-Sahuqué M., Fardeau M., Alameddine H. S. Expression of matrix metalloproteinases 2 and 9 in regenerating skeletal muscle: a study in experimentally injured and mdx muscles. Dev Biol. 1999 Jan 1;205(1):158–170. doi: 10.1006/dbio.1998.9107. [DOI] [PubMed] [Google Scholar]
  22. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  23. Leib S. L., Leppert D., Clements J., Täuber M. G. Matrix metalloproteinases contribute to brain damage in experimental pneumococcal meningitis. Infect Immun. 2000 Feb;68(2):615–620. doi: 10.1128/iai.68.2.615-620.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lomonte B., Gutiérrez J. M. A new muscle damaging toxin, myotoxin II, from the venom of the snake Bothrops asper (terciopelo). Toxicon. 1989;27(7):725–733. doi: 10.1016/0041-0101(89)90039-1. [DOI] [PubMed] [Google Scholar]
  25. Lomonte B., Lundgren J., Johansson B., Bagge U. The dynamics of local tissue damage induced by Bothrops asper snake venom and myotoxin II on the mouse cremaster muscle: an intravital and electron microscopic study. Toxicon. 1994 Jan;32(1):41–55. doi: 10.1016/0041-0101(94)90020-5. [DOI] [PubMed] [Google Scholar]
  26. Lomonte B., Tarkowski A., Hanson L. A. Host response to Bothrops asper snake venom. Analysis of edema formation, inflammatory cells, and cytokine release in a mouse model. Inflammation. 1993 Apr;17(2):93–105. doi: 10.1007/BF00916097. [DOI] [PubMed] [Google Scholar]
  27. Mantovani A., Bussolino F., Dejana E. Cytokine regulation of endothelial cell function. FASEB J. 1992 May;6(8):2591–2599. doi: 10.1096/fasebj.6.8.1592209. [DOI] [PubMed] [Google Scholar]
  28. Mantovani A., Dejana E. Cytokines as communication signals between leukocytes and endothelial cells. Immunol Today. 1989 Nov;10(11):370–375. doi: 10.1016/0167-5699(89)90270-3. [DOI] [PubMed] [Google Scholar]
  29. McLennan I. S. Degenerating and regenerating skeletal muscles contain several subpopulations of macrophages with distinct spatial and temporal distributions. J Anat. 1996 Feb;188(Pt 1):17–28. [PMC free article] [PubMed] [Google Scholar]
  30. Moreira L., Borkow G., Ovadia M., Gutiérrez J. M. Pathological changes induced by BaH1, a hemorrhagic proteinase isolated from Bothrops asper (Terciopelo) snake venom, on mouse capillary blood vessels. Toxicon. 1994 Aug;32(8):976–987. doi: 10.1016/0041-0101(94)90376-x. [DOI] [PubMed] [Google Scholar]
  31. Moreira L., Gutiérrez J. M., Borkow G., Ovadia M. Ultrastructural alterations in mouse capillary blood vessels after experimental injection of venom from the snake Bothrops asper (Terciopelo). Exp Mol Pathol. 1992 Oct;57(2):124–133. doi: 10.1016/0014-4800(92)90004-u. [DOI] [PubMed] [Google Scholar]
  32. Moura-da-Silva A. M., Laing G. D., Paine M. J., Dennison J. M., Politi V., Crampton J. M., Theakston R. D. Processing of pro-tumor necrosis factor-alpha by venom metalloproteinases: a hypothesis explaining local tissue damage following snake bite. Eur J Immunol. 1996 Sep;26(9):2000–2005. doi: 10.1002/eji.1830260905. [DOI] [PubMed] [Google Scholar]
  33. Nagase H., Woessner J. F., Jr Matrix metalloproteinases. J Biol Chem. 1999 Jul 30;274(31):21491–21494. doi: 10.1074/jbc.274.31.21491. [DOI] [PubMed] [Google Scholar]
  34. Ownby C. L., Bjarnason J., Tu A. T. Hemorrhagic toxins from rattlesnake (Crotalus atrox) venom. Pathogenesis of hemorrhage induced by three purified toxins. Am J Pathol. 1978 Oct;93(1):201–218. [PMC free article] [PubMed] [Google Scholar]
  35. Parks W. C. Matrix metalloproteinases in repair. Wound Repair Regen. 1999 Nov-Dec;7(6):423–432. doi: 10.1046/j.1524-475x.1999.00423.x. [DOI] [PubMed] [Google Scholar]
  36. Petricevich V. L., Teixeira C. F., Tambourgi D. V., Gutiérrez J. M. Increments in serum cytokine and nitric oxide levels in mice injected with Bothrops asper and Bothrops jararaca snake venoms. Toxicon. 2000 Sep;38(9):1253–1266. doi: 10.1016/s0041-0101(99)00227-5. [DOI] [PubMed] [Google Scholar]
  37. Rosenberg G. A., Navratil M. Metalloproteinase inhibition blocks edema in intracerebral hemorrhage in the rat. Neurology. 1997 Apr;48(4):921–926. doi: 10.1212/wnl.48.4.921. [DOI] [PubMed] [Google Scholar]
  38. Rucavado A., Lomonte B., Ovadia M., Gutiérrez J. M. Local tissue damage induced by BaP1, a metalloproteinase isolated from Bothrops asper (Terciopelo) snake venom. Exp Mol Pathol. 1995 Dec;63(3):186–199. doi: 10.1006/exmp.1995.1042. [DOI] [PubMed] [Google Scholar]
  39. Rucavado A., Núez J., Gutiérrez J. M. Blister formation and skin damage induced by BaP1, a haemorrhagic metalloproteinase from the venom of the snake Bothrops asper. Int J Exp Pathol. 1998 Aug;79(4):245–254. [PMC free article] [PubMed] [Google Scholar]
  40. Ruff M. R., Gifford G. E. Purification and physico-chemical characterization of rabbit tumor necrosis factor. J Immunol. 1980 Oct;125(4):1671–1677. [PubMed] [Google Scholar]
  41. Sarén P., Welgus H. G., Kovanen P. T. TNF-alpha and IL-1beta selectively induce expression of 92-kDa gelatinase by human macrophages. J Immunol. 1996 Nov 1;157(9):4159–4165. [PubMed] [Google Scholar]
  42. Shapiro S. D. Diverse roles of macrophage matrix metalloproteinases in tissue destruction and tumor growth. Thromb Haemost. 1999 Aug;82(2):846–849. [PubMed] [Google Scholar]
  43. Shapiro S. D. Matrix metalloproteinase degradation of extracellular matrix: biological consequences. Curr Opin Cell Biol. 1998 Oct;10(5):602–608. doi: 10.1016/s0955-0674(98)80035-5. [DOI] [PubMed] [Google Scholar]
  44. Spector T. Refinement of the coomassie blue method of protein quantitation. A simple and linear spectrophotometric assay for less than or equal to 0.5 to 50 microgram of protein. Anal Biochem. 1978 May;86(1):142–146. doi: 10.1016/0003-2697(78)90327-5. [DOI] [PubMed] [Google Scholar]
  45. Theakston R. D., Reid H. A. Development of simple standard assay procedures for the characterization of snake venom. Bull World Health Organ. 1983;61(6):949–956. [PMC free article] [PubMed] [Google Scholar]
  46. Tidball J. G. Inflammatory cell response to acute muscle injury. Med Sci Sports Exerc. 1995 Jul;27(7):1022–1032. doi: 10.1249/00005768-199507000-00011. [DOI] [PubMed] [Google Scholar]
  47. Trengove N. J., Stacey M. C., MacAuley S., Bennett N., Gibson J., Burslem F., Murphy G., Schultz G. Analysis of the acute and chronic wound environments: the role of proteases and their inhibitors. Wound Repair Regen. 1999 Nov-Dec;7(6):442–452. doi: 10.1046/j.1524-475x.1999.00442.x. [DOI] [PubMed] [Google Scholar]
  48. Welgus H. G., Campbell E. J., Cury J. D., Eisen A. Z., Senior R. M., Wilhelm S. M., Goldberg G. I. Neutral metalloproteinases produced by human mononuclear phagocytes. Enzyme profile, regulation, and expression during cellular development. J Clin Invest. 1990 Nov;86(5):1496–1502. doi: 10.1172/JCI114867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Yager D. R., Zhang L. Y., Liang H. X., Diegelmann R. F., Cohen I. K. Wound fluids from human pressure ulcers contain elevated matrix metalloproteinase levels and activity compared to surgical wound fluids. J Invest Dermatol. 1996 Nov;107(5):743–748. doi: 10.1111/1523-1747.ep12365637. [DOI] [PubMed] [Google Scholar]
  50. Young P. K., Grinnell F. Metalloproteinase activation cascade after burn injury: a longitudinal analysis of the human wound environment. J Invest Dermatol. 1994 Nov;103(5):660–664. doi: 10.1111/1523-1747.ep12398424. [DOI] [PubMed] [Google Scholar]

Articles from Mediators of Inflammation are provided here courtesy of Wiley

RESOURCES