Skip to main content
Mediators of Inflammation logoLink to Mediators of Inflammation
. 2002 Jun;11(3):173–180. doi: 10.1080/09622935020138811

The dynamics of cytokine d nitric oxide secretion in mice injected with Tityus serrulatus scorpion venom.

Vera L Petricevich 1, Carlos F Peña 1
PMCID: PMC1781655  PMID: 12137246

Abstract

AIMS: The effects of Tityus serrulatus venom (TSV) were analysed with respect to the susceptibility of four isogenic mouse, the symptoms following injection of venom and the inflammatory mediators in an experimental model of severe envenomation induced in mice. METHODS: The susceptibility was analysed by lethal dose (LD50) determination, including the symptoms observed during envenomating and glucose levels. The detection of cytokines in serum from mice were analysed using enzyme-linked immunosorbent assay, and nitric oxide (NO) was analysed using nitrite determination. RESULTS: The estimated LD50 values were in micrograms per 100 microliters, and the susceptibility of mice to TSV varies with: (a) mouse strain and route of injection (A/J < BALB/c < C57Bl/6 = DBA); (b) mouse strain and sex (A/J female and male < BALB/c female and male); and (c) body weight (all groups of A/J < BALB/c groups). Among the mouse strains studied, BALB/c mice presented moderate sensibility to TSV, with changes in specific signs and serum levels of glucose, several cytokines and NO, when injected intraperitoneally (i.p.) with 1 LD50 of venom. Sweating, salivation and tremor were the specific signs that preceded death. The maximum levels of glucose in sera from mice injected i.p. with 1 LD50 of TSV were observed 60-90 min post-injection. Significant differences were observed in the time-course of cytokine levels, and the venom induced marked elevations of interleukin (IL)-1alpha, IL-1beta, IL-6, IL-10 and interferon gamma (IFN-gamma). The maximum levels of IL-1alpha and IL-1beta were observed 2 h post-injection. The more pronounced levels of IL-6 were observed 4 h post-injection. There was an early increase in IFN-gamma followed by an even higher level after 4 h. IL-10 levels peaked between 6 and 8 h, and this cytokine probably modulates the secretion of IFN-gamma. Tumor necrosis factor release was not detected in BALB/c mice injected with TSV. NO levels attained maximal release after 2 h, following venom injection, while a second peak for NO was at 6 h. CONCLUSIONS: These findings indicate that the susceptibility to the systemic effects of the venom varies among mice of different haplotypes, and that the cytokines such as IL-1, IL-6, IFN-gamma and NO are strongly involved in the pathogenesis caused by this venom and are correlated with the severity of envenomation.

Full Text

The Full Text of this article is available as a PDF (205.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akira S., Hirano T., Taga T., Kishimoto T. Biology of multifunctional cytokines: IL 6 and related molecules (IL 1 and TNF). FASEB J. 1990 Aug;4(11):2860–2867. [PubMed] [Google Scholar]
  2. Barros S. F., Friedlanskaia I., Petricevich V. L., Kipnis T. L. Local inflammation, lethality and cytokine release in mice injected with Bothrops atrox venom. Mediators Inflamm. 1998;7(5):339–346. doi: 10.1080/09629359890866. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baumann H., Gauldie J. The acute phase response. Immunol Today. 1994 Feb;15(2):74–80. doi: 10.1016/0167-5699(94)90137-6. [DOI] [PubMed] [Google Scholar]
  4. Beutler B., Cerami A. Tumor necrosis, cachexia, shock, and inflammation: a common mediator. Annu Rev Biochem. 1988;57:505–518. doi: 10.1146/annurev.bi.57.070188.002445. [DOI] [PubMed] [Google Scholar]
  5. Bogdan C., Vodovotz Y., Nathan C. Macrophage deactivation by interleukin 10. J Exp Med. 1991 Dec 1;174(6):1549–1555. doi: 10.1084/jem.174.6.1549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Borish L., Rosenbaum R., McDonald B., Rosenwasser L. J. Recombinant interleukin-1 beta interacts with high-affinity receptors to activate neutrophil leukotriene B4 synthesis. Inflammation. 1990 Apr;14(2):151–162. doi: 10.1007/BF00917454. [DOI] [PubMed] [Google Scholar]
  7. Bucherl W. Biology and venoms of the most important South American spiders of the genera Phoneutria, Loxosceles, Lycosa, and Latrodectus. Am Zool. 1969 Feb;9(1):157–159. doi: 10.1093/icb/9.1.157. [DOI] [PubMed] [Google Scholar]
  8. Busse R., Mülsch A. Induction of nitric oxide synthase by cytokines in vascular smooth muscle cells. FEBS Lett. 1990 Nov 26;275(1-2):87–90. doi: 10.1016/0014-5793(90)81445-t. [DOI] [PubMed] [Google Scholar]
  9. Campbell I. L., Wong G. H., Schrader J. W., Harrison L. C. Interferon-gamma enhances the expression of the major histocompatibility class I antigens on mouse pancreatic beta cells. Diabetes. 1985 Nov;34(11):1205–1209. doi: 10.2337/diab.34.11.1205. [DOI] [PubMed] [Google Scholar]
  10. Corbett J. A., Kwon G., Turk J., McDaniel M. L. IL-1 beta induces the coexpression of both nitric oxide synthase and cyclooxygenase by islets of Langerhans: activation of cyclooxygenase by nitric oxide. Biochemistry. 1993 Dec 21;32(50):13767–13770. doi: 10.1021/bi00213a002. [DOI] [PubMed] [Google Scholar]
  11. Cunningham J. M., Green I. C. Cytokines, nitric oxide and insulin secreting cells. Growth Regul. 1994 Dec;4(4):173–180. [PubMed] [Google Scholar]
  12. Derkx B., Marchant A., Goldman M., Bijlmer R., van Deventer S. High levels of interleukin-10 during the initial phase of fulminant meningococcal septic shock. J Infect Dis. 1995 Jan;171(1):229–232. doi: 10.1093/infdis/171.1.229. [DOI] [PubMed] [Google Scholar]
  13. Dinarello C. A. The proinflammatory cytokines interleukin-1 and tumor necrosis factor and treatment of the septic shock syndrome. J Infect Dis. 1991 Jun;163(6):1177–1184. doi: 10.1093/infdis/163.6.1177. [DOI] [PubMed] [Google Scholar]
  14. Heitmeier M. R., Scarim A. L., Corbett J. A. Prolonged STAT1 activation is associated with interferon-gamma priming for interleukin-1-induced inducible nitric-oxide synthase expression by islets of Langerhans. J Biol Chem. 1999 Oct 8;274(41):29266–29273. doi: 10.1074/jbc.274.41.29266. [DOI] [PubMed] [Google Scholar]
  15. Houssiau F. A., Devogelaer J. P., Van Damme J., de Deuxchaisnes C. N., Van Snick J. Interleukin-6 in synovial fluid and serum of patients with rheumatoid arthritis and other inflammatory arthritides. Arthritis Rheum. 1988 Jun;31(6):784–788. doi: 10.1002/art.1780310614. [DOI] [PubMed] [Google Scholar]
  16. Howard M., Muchamuel T., Andrade S., Menon S. Interleukin 10 protects mice from lethal endotoxemia. J Exp Med. 1993 Apr 1;177(4):1205–1208. doi: 10.1084/jem.177.4.1205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ismail M. The scorpion envenoming syndrome. Toxicon. 1995 Jul;33(7):825–858. doi: 10.1016/0041-0101(95)00005-7. [DOI] [PubMed] [Google Scholar]
  18. Kalapothakis E., Chávez-Olórtegui C. Venom variability among several Tityus serrulatus specimens. Toxicon. 1997 Oct;35(10):1523–1529. doi: 10.1016/s0041-0101(97)00017-2. [DOI] [PubMed] [Google Scholar]
  19. Kaufmann S. H. Immunity to intracellular bacteria. Annu Rev Immunol. 1993;11:129–163. doi: 10.1146/annurev.iy.11.040193.001021. [DOI] [PubMed] [Google Scholar]
  20. Libby P., Hansson G. K. Involvement of the immune system in human atherogenesis: current knowledge and unanswered questions. Lab Invest. 1991 Jan;64(1):5–15. [PubMed] [Google Scholar]
  21. Lima M. R., dos Santos M. C., Tambourgi D. V., Marques T., da Silva W. D., Kipnis T. Susceptibility of different strains of mice to South American rattlesnake (Crotalus durissus terrificus) venom: correlation between lethal effect and creatine kinase release. Toxicon. 1991;29(6):783–786. doi: 10.1016/0041-0101(91)90070-8. [DOI] [PubMed] [Google Scholar]
  22. Lomonte B., Tarkowski A., Hanson L. A. Host response to Bothrops asper snake venom. Analysis of edema formation, inflammatory cells, and cytokine release in a mouse model. Inflammation. 1993 Apr;17(2):93–105. doi: 10.1007/BF00916097. [DOI] [PubMed] [Google Scholar]
  23. Magalhães M. M., Pereira M. E., Amaral C. F., Rezende N. A., Campolina D., Bucaretchi F., Gazzinelli R. T., Cunha-Melo J. R. Serum levels of cytokines in patients envenomed by Tityus serrulatus scorpion sting. Toxicon. 1999 Aug;37(8):1155–1164. doi: 10.1016/s0041-0101(98)00251-7. [DOI] [PubMed] [Google Scholar]
  24. Meki A. R., Mohey El-Dean Z. M. Serum interleukin-1beta, interleukin-6, nitric oxide and alpha1-antitrypsin in scorpion envenomed children. Toxicon. 1998 Dec;36(12):1851–1859. doi: 10.1016/s0041-0101(98)00106-8. [DOI] [PubMed] [Google Scholar]
  25. Moncada S., Palmer R. M., Higgs E. A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991 Jun;43(2):109–142. [PubMed] [Google Scholar]
  26. Moura-da-Silva A. M., Laing G. D., Paine M. J., Dennison J. M., Politi V., Crampton J. M., Theakston R. D. Processing of pro-tumor necrosis factor-alpha by venom metalloproteinases: a hypothesis explaining local tissue damage following snake bite. Eur J Immunol. 1996 Sep;26(9):2000–2005. doi: 10.1002/eji.1830260905. [DOI] [PubMed] [Google Scholar]
  27. Olsen F. Inflammatory cellular reaction in hypertensive vascular disease in man. Acta Pathol Microbiol Scand A. 1972;80(2):253–256. [PubMed] [Google Scholar]
  28. Petricevich V. L., Teixeira C. F., Tambourgi D. V., Gutiérrez J. M. Increments in serum cytokine and nitric oxide levels in mice injected with Bothrops asper and Bothrops jararaca snake venoms. Toxicon. 2000 Sep;38(9):1253–1266. doi: 10.1016/s0041-0101(99)00227-5. [DOI] [PubMed] [Google Scholar]
  29. Petricevich Vera L. Effect of Tityus serrulatus venom on cytokine production and the activity of murine macrophages. Mediators Inflamm. 2002 Feb;11(1):23–31. doi: 10.1080/09629350210308. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Ruff M. R., Gifford G. E. Purification and physico-chemical characterization of rabbit tumor necrosis factor. J Immunol. 1980 Oct;125(4):1671–1677. [PubMed] [Google Scholar]
  31. Schmidt H. H., Wilke P., Evers B., Böhme E. Enzymatic formation of nitrogen oxides from L-arginine in bovine brain cytosol. Biochem Biophys Res Commun. 1989 Nov 30;165(1):284–291. doi: 10.1016/0006-291x(89)91067-x. [DOI] [PubMed] [Google Scholar]
  32. Schumacher J. H., O'Garra A., Shrader B., van Kimmenade A., Bond M. W., Mosmann T. R., Coffman R. L. The characterization of four monoclonal antibodies specific for mouse IL-5 and development of mouse and human IL-5 enzyme-linked immunosorbent. J Immunol. 1988 Sep 1;141(5):1576–1581. [PubMed] [Google Scholar]
  33. Sofer S. Scorpion envenomation. Intensive Care Med. 1995 Aug;21(8):626–628. doi: 10.1007/BF01711538. [DOI] [PubMed] [Google Scholar]
  34. Stamler J. S., Singel D. J., Loscalzo J. Biochemistry of nitric oxide and its redox-activated forms. Science. 1992 Dec 18;258(5090):1898–1902. doi: 10.1126/science.1281928. [DOI] [PubMed] [Google Scholar]
  35. Tambourgi D. V., Petricevich V. L., Magnoli F. C., Assaf S. L., Jancar S., Dias Da Silva W. Endotoxemic-like shock induced by Loxosceles spider venoms: pathological changes and putative cytokine mediators. Toxicon. 1998 Feb;36(2):391–403. doi: 10.1016/s0041-0101(97)00063-9. [DOI] [PubMed] [Google Scholar]
  36. Tracey K. J., Fong Y., Hesse D. G., Manogue K. R., Lee A. T., Kuo G. C., Lowry S. F., Cerami A. Anti-cachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteraemia. Nature. 1987 Dec 17;330(6149):662–664. doi: 10.1038/330662a0. [DOI] [PubMed] [Google Scholar]
  37. Ulich T. R., Guo K. Z., Remick D., del Castillo J., Yin S. M. Endotoxin-induced cytokine gene expression in vivo. III. IL-6 mRNA and serum protein expression and the in vivo hematologic effects of IL-6. J Immunol. 1991 Apr 1;146(7):2316–2323. [PubMed] [Google Scholar]

Articles from Mediators of Inflammation are provided here courtesy of Wiley

RESOURCES