Skip to main content
Mediators of Inflammation logoLink to Mediators of Inflammation
. 2002 Jun;11(3):165–172. doi: 10.1080/09622935020138208

Implication of extracellular zinc exclusion by recombinant human calprotectin (MRP8 and MRP14) from target cells in its apoptosis-inducing activity.

Satoru Yui 1, Yuichi Nakatani 1, Michael J Hunter 1, Walter J Chazin 1, Masatoshi Yamazaki 1
PMCID: PMC1781658  PMID: 12137245

Abstract

BACKGROUND: Calprotectin is a calcium-binding and zinc-binding protein complex that is abundant in the cytosol of neutrophils. This factor is composed of 8 and 14 kDa subunits, which have also been termed migration inhibitory factor-related proteins MRP8 and MRP14. We previously reported that rat calprotectin purified from inflammatory neutrophils induces apoptosis of various tumor cells or normal fibroblasts in a zinc-reversible manner. AIM: The present study was undertaken to elucidate which subunit is responsible for the apoptosis-inducing activity, and to explore the mechanism of zinc-reversible apoptosis induction. METHODS: The apoptosis-inducing activity of recombinant human MRP8 (rhMRP8) and recombinant human MRP14 (rhMRP14) was examined against EL-4 lymphoma cells in vitro. To determine whether zinc deprivation by calprotectin was essential for the cytotoxicity, the activity of calprotectin was tested under conditions where physical contact between the factor and the cells was precluded by a low molecular weight cut-off dialysis membrane. RESULTS: The cytotoxicity of rhMRP14 against EL-4 cells was first detected at 10 microM in a standard medium, whereas rhMRP8 caused only marginal cytotoxicity at 40 microM. A mixture of both proteins showed higher specific activity (onset of cytotoxicity at 5 microM). When the cells were cultured in divalent cation-depleted medium, each dose-response curve was shifted to about a four-fold lower concentration range. Calprotectin was found to induce cell death even when the complex and the target cells were separated by dialysis membrane. A membrane-impermeable zinc chelator, diethylenetriamine pentaacetic acid (DTPA), also induced target cell apoptosis in a similar time-course as calprotectin. Moreover, the activities of calprotectin and DTPA were completely inhibited by the presence of zinc ions. CONCLUSION: These data indicate that calprotectin has higher specific activity to induce apoptosis than the Individual subunits, and that the mechanism is exclusion of zinc from target cells.

Full Text

The Full Text of this article is available as a PDF (239.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berntzen H. B., Olmez U., Fagerhol M. K., Munthe E. The leukocyte protein L1 in plasma and synovial fluid from patients with rheumatoid arthritis and osteoarthritis. Scand J Rheumatol. 1991;20(2):74–82. doi: 10.3109/03009749109165280. [DOI] [PubMed] [Google Scholar]
  2. Brodersen D. E., Nyborg J., Kjeldgaard M. Zinc-binding site of an S100 protein revealed. Two crystal structures of Ca2+-bound human psoriasin (S100A7) in the Zn2+-loaded and Zn2+-free states. Biochemistry. 1999 Feb 9;38(6):1695–1704. doi: 10.1021/bi982483d. [DOI] [PubMed] [Google Scholar]
  3. Brun J. G., Cuida M., Jacobsen H., Kloster R., Johannesen A. C., Høyeraal H. M., Jonsson R. Sjögren's syndrome in inflammatory rheumatic diseases: analysis of the leukocyte protein calprotectin in plasma and saliva. Scand J Rheumatol. 1994;23(3):114–118. doi: 10.3109/03009749409103041. [DOI] [PubMed] [Google Scholar]
  4. Brun J. G., Jonsson R., Haga H. J. Measurement of plasma calprotectin as an indicator of arthritis and disease activity in patients with inflammatory rheumatic diseases. J Rheumatol. 1994 Apr;21(4):733–738. [PubMed] [Google Scholar]
  5. Cassatella M. A. The production of cytokines by polymorphonuclear neutrophils. Immunol Today. 1995 Jan;16(1):21–26. doi: 10.1016/0167-5699(95)80066-2. [DOI] [PubMed] [Google Scholar]
  6. Chai F., Truong-Tran A. Q., Ho L. H., Zalewski P. D. Regulation of caspase activation and apoptosis by cellular zinc fluxes and zinc deprivation: A review. Immunol Cell Biol. 1999 Jun;77(3):272–278. doi: 10.1046/j.1440-1711.1999.00825.x. [DOI] [PubMed] [Google Scholar]
  7. Clohessy P. A., Golden B. E. Calprotectin-mediated zinc chelation as a biostatic mechanism in host defence. Scand J Immunol. 1995 Nov;42(5):551–556. doi: 10.1111/j.1365-3083.1995.tb03695.x. [DOI] [PubMed] [Google Scholar]
  8. Dale I., Fagerhol M. K., Naesgaard I. Purification and partial characterization of a highly immunogenic human leukocyte protein, the L1 antigen. Eur J Biochem. 1983 Jul 15;134(1):1–6. doi: 10.1111/j.1432-1033.1983.tb07522.x. [DOI] [PubMed] [Google Scholar]
  9. Hessian P. A., Edgeworth J., Hogg N. MRP-8 and MRP-14, two abundant Ca(2+)-binding proteins of neutrophils and monocytes. J Leukoc Biol. 1993 Feb;53(2):197–204. [PubMed] [Google Scholar]
  10. Hunter M. J., Chazin W. J. High level expression and dimer characterization of the S100 EF-hand proteins, migration inhibitory factor-related proteins 8 and 14. J Biol Chem. 1998 May 15;273(20):12427–12435. doi: 10.1074/jbc.273.20.12427. [DOI] [PubMed] [Google Scholar]
  11. Hyun H. J., Sohn J., Ahn Y. H., Shin H. C., Koh J. Y., Yoon Y. H. Depletion of intracellular zinc induces macromolecule synthesis- and caspase-dependent apoptosis of cultured retinal cells. Brain Res. 2000 Jun 30;869(1-2):39–48. doi: 10.1016/s0006-8993(00)02340-4. [DOI] [PubMed] [Google Scholar]
  12. Johne B., Fagerhol M. K., Lyberg T., Prydz H., Brandtzaeg P., Naess-Andresen C. F., Dale I. Functional and clinical aspects of the myelomonocyte protein calprotectin. Mol Pathol. 1997 Jun;50(3):113–123. doi: 10.1136/mp.50.3.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Koike T., Kondo K., Makita T., Kajiyama K., Yoshida T., Morikawa M. Intracellular localization of migration inhibitory factor-related protein (MRP) and detection of cell surface MRP binding sites on human leukemia cell lines. J Biochem. 1998 Jun;123(6):1079–1087. doi: 10.1093/oxfordjournals.jbchem.a022046. [DOI] [PubMed] [Google Scholar]
  14. Lloyd A. R., Oppenheim J. J. Poly's lament: the neglected role of the polymorphonuclear neutrophil in the afferent limb of the immune response. Immunol Today. 1992 May;13(5):169–172. doi: 10.1016/0167-5699(92)90121-M. [DOI] [PubMed] [Google Scholar]
  15. Loomans H. J., Hahn B. L., Li Q. Q., Phadnis S. H., Sohnle P. G. Histidine-based zinc-binding sequences and the antimicrobial activity of calprotectin. J Infect Dis. 1998 Mar;177(3):812–814. doi: 10.1086/517816. [DOI] [PubMed] [Google Scholar]
  16. Marini M., Frabetti F., Canaider S., Dini L., Falcieri E., Poirier G. G. Modulation of caspase-3 activity by zinc ions and by the cell redox state. Exp Cell Res. 2001 Jun 10;266(2):323–332. doi: 10.1006/excr.2001.5222. [DOI] [PubMed] [Google Scholar]
  17. Martin S. J., Mazdai G., Strain J. J., Cotter T. G., Hannigan B. M. Programmed cell death (apoptosis) in lymphoid and myeloid cell lines during zinc deficiency. Clin Exp Immunol. 1991 Feb;83(2):338–343. doi: 10.1111/j.1365-2249.1991.tb05639.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. McCabe M. J., Jr, Jiang S. A., Orrenius S. Chelation of intracellular zinc triggers apoptosis in mature thymocytes. Lab Invest. 1993 Jul;69(1):101–110. [PubMed] [Google Scholar]
  19. Mikami M., Yamazaki M., Yui S. Kinetical analysis of tumor cell death-inducing mechanism by polymorphonuclear leukocyte-derived calprotectin: involvement of protein synthesis and generation of reactive oxygen species in target cells. Microbiol Immunol. 1998;42(3):211–221. doi: 10.1111/j.1348-0421.1998.tb02273.x. [DOI] [PubMed] [Google Scholar]
  20. Murthy A. R., Lehrer R. I., Harwig S. S., Miyasaki K. T. In vitro candidastatic properties of the human neutrophil calprotectin complex. J Immunol. 1993 Dec 1;151(11):6291–6301. [PubMed] [Google Scholar]
  21. Mäler L., Potts B. C., Chazin W. J. High resolution solution structure of apo calcyclin and structural variations in the S100 family of calcium-binding proteins. J Biomol NMR. 1999 Mar;13(3):233–247. doi: 10.1023/a:1008315517955. [DOI] [PubMed] [Google Scholar]
  22. Nakatani T., Tawaramoto M., Opare Kennedy D., Kojima A., Matsui-Yuasa I. Apoptosis induced by chelation of intracellular zinc is associated with depletion of cellular reduced glutathione level in rat hepatocytes. Chem Biol Interact. 2000 Mar 15;125(3):151–163. doi: 10.1016/s0009-2797(99)00166-0. [DOI] [PubMed] [Google Scholar]
  23. Newton R. A., Hogg N. The human S100 protein MRP-14 is a novel activator of the beta 2 integrin Mac-1 on neutrophils. J Immunol. 1998 Feb 1;160(3):1427–1435. [PubMed] [Google Scholar]
  24. Odink K., Cerletti N., Brüggen J., Clerc R. G., Tarcsay L., Zwadlo G., Gerhards G., Schlegel R., Sorg C. Two calcium-binding proteins in infiltrate macrophages of rheumatoid arthritis. Nature. 1987 Nov 5;330(6143):80–82. doi: 10.1038/330080a0. [DOI] [PubMed] [Google Scholar]
  25. Pröpper C., Huang X., Roth J., Sorg C., Nacken W. Analysis of the MRP8-MRP14 protein-protein interaction by the two-hybrid system suggests a prominent role of the C-terminal domain of S100 proteins in dimer formation. J Biol Chem. 1999 Jan 1;274(1):183–188. doi: 10.1074/jbc.274.1.183. [DOI] [PubMed] [Google Scholar]
  26. Randazzo A., Acklin C., Schäfer B. W., Heizmann C. W., Chazin W. J. Structural insight into human Zn(2+)-bound S100A2 from NMR and homology modeling. Biochem Biophys Res Commun. 2001 Oct 26;288(2):462–467. doi: 10.1006/bbrc.2001.5793. [DOI] [PubMed] [Google Scholar]
  27. Ribeiro J. M., Carson D. A. Ca2+/Mg(2+)-dependent endonuclease from human spleen: purification, properties, and role in apoptosis. Biochemistry. 1993 Sep 7;32(35):9129–9136. doi: 10.1021/bi00086a018. [DOI] [PubMed] [Google Scholar]
  28. Schäfer B. W., Heizmann C. W. The S100 family of EF-hand calcium-binding proteins: functions and pathology. Trends Biochem Sci. 1996 Apr;21(4):134–140. doi: 10.1016/s0968-0004(96)80167-8. [DOI] [PubMed] [Google Scholar]
  29. Schäfer B. W., Wicki R., Engelkamp D., Mattei M. G., Heizmann C. W. Isolation of a YAC clone covering a cluster of nine S100 genes on human chromosome 1q21: rationale for a new nomenclature of the S100 calcium-binding protein family. Genomics. 1995 Feb 10;25(3):638–643. doi: 10.1016/0888-7543(95)80005-7. [DOI] [PubMed] [Google Scholar]
  30. Sohnle P. G., Collins-Lech C., Wiessner J. H. Antimicrobial activity of an abundant calcium-binding protein in the cytoplasm of human neutrophils. J Infect Dis. 1991 Jan;163(1):187–192. doi: 10.1093/infdis/163.1.187. [DOI] [PubMed] [Google Scholar]
  31. Sohnle P. G., Collins-Lech C., Wiessner J. H. The zinc-reversible antimicrobial activity of neutrophil lysates and abscess fluid supernatants. J Infect Dis. 1991 Jul;164(1):137–142. doi: 10.1093/infdis/164.1.137. [DOI] [PubMed] [Google Scholar]
  32. Sohnle P. G., Hunter M. J., Hahn B., Chazin W. J. Zinc-reversible antimicrobial activity of recombinant calprotectin (migration inhibitory factor-related proteins 8 and 14). J Infect Dis. 2000 Sep 5;182(4):1272–1275. doi: 10.1086/315810. [DOI] [PubMed] [Google Scholar]
  33. Srikrishna G., Panneerselvam K., Westphal V., Abraham V., Varki A., Freeze H. H. Two proteins modulating transendothelial migration of leukocytes recognize novel carboxylated glycans on endothelial cells. J Immunol. 2001 Apr 1;166(7):4678–4688. doi: 10.4049/jimmunol.166.7.4678. [DOI] [PubMed] [Google Scholar]
  34. Steinbakk M., Naess-Andresen C. F., Lingaas E., Dale I., Brandtzaeg P., Fagerhol M. K. Antimicrobial actions of calcium binding leucocyte L1 protein, calprotectin. Lancet. 1990 Sep 29;336(8718):763–765. doi: 10.1016/0140-6736(90)93237-j. [DOI] [PubMed] [Google Scholar]
  35. Wilkinson M. M., Busuttil A., Hayward C., Brock D. J., Dorin J. R., Van Heyningen V. Expression pattern of two related cystic fibrosis-associated calcium-binding proteins in normal and abnormal tissues. J Cell Sci. 1988 Oct;91(Pt 2):221–230. doi: 10.1242/jcs.91.2.221. [DOI] [PubMed] [Google Scholar]
  36. Yui S., Mikami M., Tsurumaki K., Yamazaki M. Growth-inhibitory and apoptosis-inducing activities of calprotectin derived from inflammatory exudate cells on normal fibroblasts: regulation by metal ions. J Leukoc Biol. 1997 Jan;61(1):50–57. [PubMed] [Google Scholar]
  37. Yui S., Mikami M., Yamazaki M. Induction of apoptotic cell death in mouse lymphoma and human leukemia cell lines by a calcium-binding protein complex, calprotectin, derived from inflammatory peritoneal exudate cells. J Leukoc Biol. 1995 Dec;58(6):650–658. doi: 10.1002/jlb.58.6.650. [DOI] [PubMed] [Google Scholar]
  38. Yui S., Mikami M., Yamazaki M. Purification and characterization of the cytotoxic factor in rat peritoneal exudate cells: its identification as the calcium binding protein complex, calprotectin. J Leukoc Biol. 1995 Sep;58(3):307–316. doi: 10.1002/jlb.58.3.307. [DOI] [PubMed] [Google Scholar]
  39. Yui S., Yang D., Mikami M., Yamazaki M. Characterization of cell growth-inhibitory factor in inflammatory peritoneal exudate cells of rats. Microbiol Immunol. 1993;37(12):961–969. doi: 10.1111/j.1348-0421.1993.tb01730.x. [DOI] [PubMed] [Google Scholar]

Articles from Mediators of Inflammation are provided here courtesy of Wiley

RESOURCES