Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Jul;178(14):4099–4104. doi: 10.1128/jb.178.14.4099-4104.1996

Sodium-coupled energy transduction in the newly isolated thermoalkaliphilic strain LBS3.

S G Prowe 1, J L van de Vossenberg 1, A J Driessen 1, G Antranikian 1, W N Konings 1
PMCID: PMC178166  PMID: 8763937

Abstract

Strain LBS3 is a novel anaerobic thermoalkaliphilic bacterium that grows optimally at pH 9.5 and 50 degrees C. Since a high concentration of Na+ ions is required for growth, we have analyzed the primary bioenergetic mechanism of energy transduction in this organism. For this purpose, a method was devised for the isolation of right-side-out membrane vesicles that are functional for the energy-dependent uptake of solutes. A strict requirement for Na+ was observed for the uptake of several amino acids, and in the case of L-leucine, it was concluded that amino acid uptake occurs in symport with Na+ ions. Further characterization of the leucine transport system revealed that its pH and temperature optima closely match the conditions that support the growth of strain LBS3. The ATPase activity associated with inside-out membrane vesicles was found to be stimulated by both Na+ and Li+ ions. These data suggest that the primary mechanism of energy transduction in the anaerobic thermoalkaliphilic strain LBS3 is dependent on sodium cycling. The implications of this finding for the mechanism of intracellular pH regulation are discussed.

Full Text

The Full Text of this article is available as a PDF (284.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Becher B., Müller V. Delta mu Na+ drives the synthesis of ATP via an delta mu Na(+)-translocating F1F0-ATP synthase in membrane vesicles of the archaeon Methanosarcina mazei Gö1. J Bacteriol. 1994 May;176(9):2543–2550. doi: 10.1128/jb.176.9.2543-2550.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Dimroth P. Na(+)-coupled alternative to H(+)-coupled primary transport systems in bacteria. Bioessays. 1991 Sep;13(9):463–468. doi: 10.1002/bies.950130906. [DOI] [PubMed] [Google Scholar]
  3. Dimroth P. Sodium ion transport decarboxylases and other aspects of sodium ion cycling in bacteria. Microbiol Rev. 1987 Sep;51(3):320–340. doi: 10.1128/mr.51.3.320-340.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Henkel R. D., VandeBerg J. L., Walsh R. A. A microassay for ATPase. Anal Biochem. 1988 Mar;169(2):312–318. doi: 10.1016/0003-2697(88)90290-4. [DOI] [PubMed] [Google Scholar]
  5. Hicks D. B., Krulwich T. A. Purification and reconstitution of the F1F0-ATP synthase from alkaliphilic Bacillus firmus OF4. Evidence that the enzyme translocates H+ but not Na+. J Biol Chem. 1990 Nov 25;265(33):20547–20554. [PubMed] [Google Scholar]
  6. Jahns T. Ammonium/urea-dependent generation of a proton electrochemical potential and synthesis of ATP in Bacillus pasteurii. J Bacteriol. 1996 Jan;178(2):403–409. doi: 10.1128/jb.178.2.403-409.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Keller M., Braun F. J., Dirmeier R., Hafenbradl D., Burggraf S., Rachel R., Stetter K. O. Thermococcus alcaliphilus sp. nov., a new hyperthermophilic archaeum growing on polysulfide at alkaline pH. Arch Microbiol. 1995 Dec;164(6):390–395. [PubMed] [Google Scholar]
  8. Konings W. N., Poolman B., van Veen H. W. Solute transport and energy transduction in bacteria. Antonie Van Leeuwenhoek. 1994;65(4):369–380. doi: 10.1007/BF00872220. [DOI] [PubMed] [Google Scholar]
  9. Krulwich T. A. Alkaliphiles: 'basic' molecular problems of pH tolerance and bioenergetics. Mol Microbiol. 1995 Feb;15(3):403–410. doi: 10.1111/j.1365-2958.1995.tb02253.x. [DOI] [PubMed] [Google Scholar]
  10. Krulwich T. A. Bioenergetics of alkalophilic bacteria. J Membr Biol. 1986;89(2):113–125. doi: 10.1007/BF01869707. [DOI] [PubMed] [Google Scholar]
  11. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  12. Lanzetta P. A., Alvarez L. J., Reinach P. S., Candia O. A. An improved assay for nanomole amounts of inorganic phosphate. Anal Biochem. 1979 Nov 15;100(1):95–97. doi: 10.1016/0003-2697(79)90115-5. [DOI] [PubMed] [Google Scholar]
  13. Laubinger W., Dimroth P. Characterization of the ATP synthase of Propionigenium modestum as a primary sodium pump. Biochemistry. 1988 Sep 20;27(19):7531–7537. doi: 10.1021/bi00419a053. [DOI] [PubMed] [Google Scholar]
  14. Li Y., Engle M., Weiss N., Mandelco L., Wiegel J. Clostridium thermoalcaliphilum sp. nov., an anaerobic and thermotolerant facultative alkaliphile. Int J Syst Bacteriol. 1994 Jan;44(1):111–118. doi: 10.1099/00207713-44-1-111. [DOI] [PubMed] [Google Scholar]
  15. Macy J. M., Snellen J. E., Hungate R. E. Use of syringe methods for anaerobiosis. Am J Clin Nutr. 1972 Dec;25(12):1318–1323. doi: 10.1093/ajcn/25.12.1318. [DOI] [PubMed] [Google Scholar]
  16. Ni S., Boone J. E., Boone D. R. Potassium extrusion by the moderately halophilic and alkaliphilic methanogen methanolobus taylorii GS-16 and homeostasis of cytosolic pH. J Bacteriol. 1994 Dec;176(23):7274–7279. doi: 10.1128/jb.176.23.7274-7279.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Speelmans G., Poolman B., Abee T., Konings W. N. Energy transduction in the thermophilic anaerobic bacterium Clostridium fervidus is exclusively coupled to sodium ions. Proc Natl Acad Sci U S A. 1993 Sep 1;90(17):7975–7979. doi: 10.1073/pnas.90.17.7975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Speelmans G., Poolman B., Abee T., Konings W. N. The F- or V-type Na(+)-ATPase of the thermophilic bacterium Clostridium fervidus. J Bacteriol. 1994 Aug;176(16):5160–5162. doi: 10.1128/jb.176.16.5160-5162.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Speelmans G., de Vrij W., Konings W. N. Characterization of amino acid transport in membrane vesicles from the thermophilic fermentative bacterium Clostridium fervidus. J Bacteriol. 1989 Jul;171(7):3788–3795. doi: 10.1128/jb.171.7.3788-3795.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sugiyama S. Na(+)-driven flagellar motors as a likely Na+ re-entry pathway in alkaliphilic bacteria. Mol Microbiol. 1995 Feb;15(3):592–592. doi: 10.1111/j.1365-2958.1995.tb02273.x. [DOI] [PubMed] [Google Scholar]
  21. Takase K., Yamato I., Kakinuma Y. Cloning and sequencing of the genes coding for the A and B subunits of vacuolar-type Na(+)-ATPase from Enterococcus hirae. Coexistence of vacuolar- and F0F1-type ATPases in one bacterial cell. J Biol Chem. 1993 Jun 5;268(16):11610–11616. [PubMed] [Google Scholar]
  22. van de Vossenberg J. L., Ubbink-Kok T., Elferink M. G., Driessen A. J., Konings W. N. Ion permeability of the cytoplasmic membrane limits the maximum growth temperature of bacteria and archaea. Mol Microbiol. 1995 Dec;18(5):925–932. doi: 10.1111/j.1365-2958.1995.18050925.x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES