Abstract
BACKGROUND: We have previously shown that the calcium-binding protein MRP-14 secreted by neutrophils mediates the antinociceptive response in an acute inflammatory model induced by the intraperitoneal injection of glycogen in mice. AIM: In an attempt to broaden the concept that neutrophils and MRP-14 controls inflammatory pain induced by different type of irritants, in the present study, after demonstrating that carrageenan (Cg) also induces atinociception in mice, we investigated the participation of both neutrophils and MRP-14 in the phenomenon. METHODS: Male Swiss mice were injected intraperitoneally with Cg and after different time intervals, the pattern of cell migration of the peritoneal exudate and the nociceptive response of animals submitted to the writhing test were evaluated. The participation of neutrophils and of the MRP-14 on the Cg effect was evaluated by systemic inoculation of monoclonal antibodies anti-granulocyte and anti-MRP-14. RESULTS: Our results demonstrate that the acute neutrophilic peritonitis evoked by Cg induced antinociception 2, 4 and 8 h after inoculation of the irritant. Monoclonal antibodies anti-granulocyte or anti-MRP-14 reverts the antinociceptive response only 2 and 8 h after Cg injection. The antibody anti-MRP-14 partially reverts the antinociception observed after 4 h of Cg injection while the anti-granulocyte antibody enhances this effect. This effect is reverted by simultaneous treatment of the animals with both antibodies. After 4 h of Cg injection in neutrophil-depleted mice a significant expression of the calcium-binding protein MRP-14 was detected in the cytoplasm of peritoneal macrophages. This suggests that the enhancement of the effect observed after treatment with the anti-neutrophil antibody may be due to secretion of MRP-14 by macrophages. It has also been demonstrated that endogenous opioids and glucocorticoids are not involved in the antinociception observed at the 4th hour after Cg injection. CONCLUSION: These data support the hypothesis that neutrophils and the calcium-binding protein MRP-14 are participants of the endogenous control of inflammatory pain in mice despite the model of acute inflammation used.
Full Text
The Full Text of this article is available as a PDF (324.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aguiar-Passeti T., Postol E., Sorg C., Mariano M. Epithelioid cells from foreign-body granuloma selectively express the calcium-binding protein MRP-14, a novel down-regulatory molecule of macrophage activation. J Leukoc Biol. 1997 Dec;62(6):852–858. doi: 10.1002/jlb.62.6.852. [DOI] [PubMed] [Google Scholar]
- Andersson K. B., Sletten K., Berntzen H. B., Dale I., Brandtzaeg P., Jellum E., Fagerhol M. K. The leucocyte L1 protein: identity with the cystic fibrosis antigen and the calcium-binding MRP-8 and MRP-14 macrophage components. Scand J Immunol. 1988 Aug;28(2):241–245. doi: 10.1111/j.1365-3083.1988.tb02437.x. [DOI] [PubMed] [Google Scholar]
- Beekhuizen H., van Furth R. Monocyte adherence to human vascular endothelium. J Leukoc Biol. 1993 Oct;54(4):363–378. [PubMed] [Google Scholar]
- Brun J. G., Håland G., Haga H. J., Fagerhol M. K., Jonsson R. Effects of calprotectin in avridine-induced arthritis. APMIS. 1995 Mar;103(3):233–240. doi: 10.1111/j.1699-0463.1995.tb01100.x. [DOI] [PubMed] [Google Scholar]
- Brun J. G., Jonsson R., Haga H. J. Measurement of plasma calprotectin as an indicator of arthritis and disease activity in patients with inflammatory rheumatic diseases. J Rheumatol. 1994 Apr;21(4):733–738. [PubMed] [Google Scholar]
- Cassatella M. A. The production of cytokines by polymorphonuclear neutrophils. Immunol Today. 1995 Jan;16(1):21–26. doi: 10.1016/0167-5699(95)80066-2. [DOI] [PubMed] [Google Scholar]
- Chrousos G. P. The hypothalamic-pituitary-adrenal axis and immune-mediated inflammation. N Engl J Med. 1995 May 18;332(20):1351–1362. doi: 10.1056/NEJM199505183322008. [DOI] [PubMed] [Google Scholar]
- Cunha F. Q., Poole S., Lorenzetti B. B., Veiga F. H., Ferreira S. H. Cytokine-mediated inflammatory hyperalgesia limited by interleukin-4. Br J Pharmacol. 1999 Jan;126(1):45–50. doi: 10.1038/sj.bjp.0702266. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Członkowski A., Stein C., Herz A. Peripheral mechanisms of opioid antinociception in inflammation: involvement of cytokines. Eur J Pharmacol. 1993 Oct 5;242(3):229–235. doi: 10.1016/0014-2999(93)90246-e. [DOI] [PubMed] [Google Scholar]
- Dale I., Fagerhol M. K., Naesgaard I. Purification and partial characterization of a highly immunogenic human leukocyte protein, the L1 antigen. Eur J Biochem. 1983 Jul 15;134(1):1–6. doi: 10.1111/j.1432-1033.1983.tb07522.x. [DOI] [PubMed] [Google Scholar]
- Dorin J. R., Novak M., Hill R. E., Brock D. J., Secher D. S., van Heyningen V. A clue to the basic defect in cystic fibrosis from cloning the CF antigen gene. Nature. 1987 Apr 9;326(6113):614–617. doi: 10.1038/326614a0. [DOI] [PubMed] [Google Scholar]
- Downey G. P., Fialkow L., Fukushima T. Initial interaction of leukocytes within the microvasculature: deformability, adhesion, and transmigration. New Horiz. 1995 May;3(2):219–228. [PubMed] [Google Scholar]
- Dray A., Bevan S. Inflammation and hyperalgesia: highlighting the team effort. Trends Pharmacol Sci. 1993 Aug;14(8):287–290. doi: 10.1016/0165-6147(93)90041-H. [DOI] [PubMed] [Google Scholar]
- Dray A. Inflammatory mediators of pain. Br J Anaesth. 1995 Aug;75(2):125–131. doi: 10.1093/bja/75.2.125. [DOI] [PubMed] [Google Scholar]
- Edgeworth J., Gorman M., Bennett R., Freemont P., Hogg N. Identification of p8,14 as a highly abundant heterodimeric calcium binding protein complex of myeloid cells. J Biol Chem. 1991 Apr 25;266(12):7706–7713. [PubMed] [Google Scholar]
- Fleming T. J., Fleming M. L., Malek T. R. Selective expression of Ly-6G on myeloid lineage cells in mouse bone marrow. RB6-8C5 mAb to granulocyte-differentiation antigen (Gr-1) detects members of the Ly-6 family. J Immunol. 1993 Sep 1;151(5):2399–2408. [PubMed] [Google Scholar]
- Giorgi R., Pagano R. L., Dias M. A., Aguiar-Passeti T., Sorg C., Mariano M. Antinociceptive effect of the calcium-binding protein MRP-14 and the role played by neutrophils on the control of inflammatory pain. J Leukoc Biol. 1998 Aug;64(2):214–220. doi: 10.1002/jlb.64.2.214. [DOI] [PubMed] [Google Scholar]
- Golden B. E., Clohessy P. A., Russell G., Fagerhol M. K. Calprotectin as a marker of inflammation in cystic fibrosis. Arch Dis Child. 1996 Feb;74(2):136–139. doi: 10.1136/adc.74.2.136. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hessian P. A., Edgeworth J., Hogg N. MRP-8 and MRP-14, two abundant Ca(2+)-binding proteins of neutrophils and monocytes. J Leukoc Biol. 1993 Feb;53(2):197–204. [PubMed] [Google Scholar]
- Hogg N., Allen C., Edgeworth J. Monoclonal antibody 5.5 reacts with p8,14, a myeloid molecule associated with some vascular endothelium. Eur J Immunol. 1989 Jun;19(6):1053–1061. doi: 10.1002/eji.1830190615. [DOI] [PubMed] [Google Scholar]
- Kelly S. E., Jones D. B., Fleming S. Calgranulin expression in inflammatory dermatoses. J Pathol. 1989 Sep;159(1):17–21. doi: 10.1002/path.1711590107. [DOI] [PubMed] [Google Scholar]
- Klempt M., Melkonyan H., Nacken W., Wiesmann D., Holtkemper U., Sorg C. The heterodimer of the Ca2+-binding proteins MRP8 and MRP14 binds to arachidonic acid. FEBS Lett. 1997 May 12;408(1):81–84. doi: 10.1016/s0014-5793(97)00394-3. [DOI] [PubMed] [Google Scholar]
- Kligman D., Hilt D. C. The S100 protein family. Trends Biochem Sci. 1988 Nov;13(11):437–443. doi: 10.1016/0968-0004(88)90218-6. [DOI] [PubMed] [Google Scholar]
- Lagasse E., Clerc R. G. Cloning and expression of two human genes encoding calcium-binding proteins that are regulated during myeloid differentiation. Mol Cell Biol. 1988 Jun;8(6):2402–2410. doi: 10.1128/mcb.8.6.2402. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leme J. G., Schapoval E. E. Stimulation of the hypothalamo-pituitary-adrenal axis by compounds formed in inflamed tissue. Br J Pharmacol. 1975 Jan;53(1):75–83. doi: 10.1111/j.1476-5381.1975.tb07332.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lloyd A. R., Oppenheim J. J. Poly's lament: the neglected role of the polymorphonuclear neutrophil in the afferent limb of the immune response. Immunol Today. 1992 May;13(5):169–172. doi: 10.1016/0167-5699(92)90121-M. [DOI] [PubMed] [Google Scholar]
- Lorenzetti B. B., Poole S., Veiga F. H., Cunha F. Q., Ferreira S. H. Cytokine-mediated inflammatory hyperalgesia limited by interleukin-13. Eur Cytokine Netw. 2001 Apr-Jun;12(2):260–267. [PubMed] [Google Scholar]
- Nacken W., Sopalla C., Pröpper C., Sorg C., Kerkhoff C. Biochemical characterization of the murine S100A9 (MRP14) protein suggests that it is functionally equivalent to its human counterpart despite its low degree of sequence homology. Eur J Biochem. 2000 Jan;267(2):560–565. doi: 10.1046/j.1432-1327.2000.01040.x. [DOI] [PubMed] [Google Scholar]
- Newton R. A., Hogg N. The human S100 protein MRP-14 is a novel activator of the beta 2 integrin Mac-1 on neutrophils. J Immunol. 1998 Feb 1;160(3):1427–1435. [PubMed] [Google Scholar]
- Odink K., Cerletti N., Brüggen J., Clerc R. G., Tarcsay L., Zwadlo G., Gerhards G., Schlegel R., Sorg C. Two calcium-binding proteins in infiltrate macrophages of rheumatoid arthritis. Nature. 1987 Nov 5;330(6143):80–82. doi: 10.1038/330080a0. [DOI] [PubMed] [Google Scholar]
- Poole S., Cunha F. Q., Selkirk S., Lorenzetti B. B., Ferreira S. H. Cytokine-mediated inflammatory hyperalgesia limited by interleukin-10. Br J Pharmacol. 1995 Jun;115(4):684–688. doi: 10.1111/j.1476-5381.1995.tb14987.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rammes A., Roth J., Goebeler M., Klempt M., Hartmann M., Sorg C. Myeloid-related protein (MRP) 8 and MRP14, calcium-binding proteins of the S100 family, are secreted by activated monocytes via a novel, tubulin-dependent pathway. J Biol Chem. 1997 Apr 4;272(14):9496–9502. doi: 10.1074/jbc.272.14.9496. [DOI] [PubMed] [Google Scholar]
- Ribeiro R. A., Vale M. L., Thomazzi S. M., Paschoalato A. B., Poole S., Ferreira S. H., Cunha F. Q. Involvement of resident macrophages and mast cells in the writhing nociceptive response induced by zymosan and acetic acid in mice. Eur J Pharmacol. 2000 Jan 3;387(1):111–118. doi: 10.1016/s0014-2999(99)00790-6. [DOI] [PubMed] [Google Scholar]
- Roth J., Burwinkel F., van den Bos C., Goebeler M., Vollmer E., Sorg C. MRP8 and MRP14, S-100-like proteins associated with myeloid differentiation, are translocated to plasma membrane and intermediate filaments in a calcium-dependent manner. Blood. 1993 Sep 15;82(6):1875–1883. [PubMed] [Google Scholar]
- Roth J., Sunderkötter C., Goebeler M., Gutwald J., Sorg C. Expression of the calcium-binding proteins MRP8 and MRP14 by early infiltrating cells in experimental contact dermatitis. Int Arch Allergy Immunol. 1992;98(2):140–145. doi: 10.1159/000236177. [DOI] [PubMed] [Google Scholar]
- Sannomiya P., Anteghini H. J., Vianna E. S., Garcia-Leme J. Involvement of lymphocytes in non-immune inflammation: dual effect of glucocorticoids. Agents Actions. 1985 Sep;16(6):552–557. doi: 10.1007/BF01983662. [DOI] [PubMed] [Google Scholar]
- Siegenthaler G., Roulin K., Chatellard-Gruaz D., Hotz R., Saurat J. H., Hellman U., Hagens G. A heterocomplex formed by the calcium-binding proteins MRP8 (S100A8) and MRP14 (S100A9) binds unsaturated fatty acids with high affinity. J Biol Chem. 1997 Apr 4;272(14):9371–9377. doi: 10.1074/jbc.272.14.9371. [DOI] [PubMed] [Google Scholar]
- Sorg C. The calcium binding proteins MRP8 and MRP14 in acute and chronic inflammation. Behring Inst Mitt. 1992 Apr;(91):126–137. [PubMed] [Google Scholar]
- Stein C. The control of pain in peripheral tissue by opioids. N Engl J Med. 1995 Jun 22;332(25):1685–1690. doi: 10.1056/NEJM199506223322506. [DOI] [PubMed] [Google Scholar]
- Steinbakk M., Naess-Andresen C. F., Lingaas E., Dale I., Brandtzaeg P., Fagerhol M. K. Antimicrobial actions of calcium binding leucocyte L1 protein, calprotectin. Lancet. 1990 Sep 29;336(8718):763–765. doi: 10.1016/0140-6736(90)93237-j. [DOI] [PubMed] [Google Scholar]
- Takemura R., Werb Z. Secretory products of macrophages and their physiological functions. Am J Physiol. 1984 Jan;246(1 Pt 1):C1–C9. doi: 10.1152/ajpcell.1984.246.1.C1. [DOI] [PubMed] [Google Scholar]
- Temple T. E., Liddle G. W. Inhibitors of adrenal steroid biosynthesis. Annu Rev Pharmacol. 1970;10:199–218. doi: 10.1146/annurev.pa.10.040170.001215. [DOI] [PubMed] [Google Scholar]
- Wilkinson M. M., Busuttil A., Hayward C., Brock D. J., Dorin J. R., Van Heyningen V. Expression pattern of two related cystic fibrosis-associated calcium-binding proteins in normal and abnormal tissues. J Cell Sci. 1988 Oct;91(Pt 2):221–230. doi: 10.1242/jcs.91.2.221. [DOI] [PubMed] [Google Scholar]
- Zimmermann M. Ethical guidelines for investigations of experimental pain in conscious animals. Pain. 1983 Jun;16(2):109–110. doi: 10.1016/0304-3959(83)90201-4. [DOI] [PubMed] [Google Scholar]
- Zwadlo G., Brüggen J., Gerhards G., Schlegel R., Sorg C. Two calcium-binding proteins associated with specific stages of myeloid cell differentiation are expressed by subsets of macrophages in inflammatory tissues. Clin Exp Immunol. 1988 Jun;72(3):510–515. [PMC free article] [PubMed] [Google Scholar]
- van den Bos C., Roth J., Koch H. G., Hartmann M., Sorg C. Phosphorylation of MRP14, an S100 protein expressed during monocytic differentiation, modulates Ca(2+)-dependent translocation from cytoplasm to membranes and cytoskeleton. J Immunol. 1996 Feb 1;156(3):1247–1254. [PubMed] [Google Scholar]