Skip to main content
Mediators of Inflammation logoLink to Mediators of Inflammation
. 2002 Aug;11(4):235–244. doi: 10.1080/0962935029000096

Inhibitory action of a macrolide antibiotic, roxithromycin, on co-stimulatory molecule expressions in vitro and in vivo.

Mayumi Suzuki 1, Kazuhito Asano 1, Mei Yu 1, Tadashi Hisamitsu 1, Harumi Suzaki 1
PMCID: PMC1781671  PMID: 12396475

Abstract

OBJECTIVE: The influence of a macrolide antibiotic, roxithromycin (RXM), on co-stimulatory molecule expression was examined in vitro and in vivo. MATERIALS AND METHODS: Spleen cells obtained from BALB/c mice 10 days after immunization with 8.0 microg of hemocyanin absorbed to 4.0 mg of aluminum hydroxide were cultured in the presence of 100.0 microg/ml of hemocyanin and various concentrations of RXM. We first examined the influence of RXM on cell activation by examining the proliferative response of cells and cytokine production. We also examined the influence of RXM on co-stimulatory molecule (CD40, CD80 and CD86) expressions on cultured splenic B-lymphocytes induced by in vitro antigenic stimulation using flow cytometry. In the second part of experiments, non-immunized and immunized mice were treated orally with 2.5 mg/kg of RXM once a day for 4 or 8 weeks. Splenic B lymphocytes were obtained from these mice 24 h after antigenic challenge, and co-stimulatory molecule expressions were examined by flow cytometer. RESULTS: Cell activation induced by in vitro antigenic stimulation was suppressed by RXM when cells were cultured in the presence of more than 5.0 microg/ml of the agent. Addition of RXM at a concentration of 5.0 microg/ml into cell cultures also suppressed co-stimulatory molecule (CD40, CD80 and CD86) expressions on splenic B lymphocytes, which was enhanced by antigenic stimulation in vitro. Oral RXM administration for 4 weeks clearly suppressed the enhancement of CD40 and CD86 (but not CD80) expressions on splenic B lymphocytes induced by antigenic stimulation in vivo. This suppressive activity of RXM on co-stimulatory molecule (CD40 and CD86) expressions was further strengthened by the treatment of mice for 8 weeks. Long-term treatment with oral RXM also suppressed CD80 expressions, which was not suppressed by 4-week treatment. CONCLUSION: The present results suggest that RXM exerts its immunomodulating effects through suppression of both cell activation and co-stimulatory molecule expressions induced by antigenic stimulation. These suppressive activities of RXM might contribute, in part, to the therapeutic mode of action of RXM on inflammatory diseases.

Full Text

The Full Text of this article is available as a PDF (236.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Corry D. B., Reiner S. L., Linsley P. S., Locksley R. M. Differential effects of blockade of CD28-B7 on the development of Th1 or Th2 effector cells in experimental leishmaniasis. J Immunol. 1994 Nov 1;153(9):4142–4148. [PubMed] [Google Scholar]
  2. Depoortere I., Peeters T. L. Transduction mechanism of motilin and motilides in rabbit duodenal smooth muscle. Regul Pept. 1995 Feb 14;55(3):227–235. doi: 10.1016/0167-0115(94)00111-a. [DOI] [PubMed] [Google Scholar]
  3. Endres S., Fülle H. J., Sinha B., Stoll D., Dinarello C. A., Gerzer R., Weber P. C. Cyclic nucleotides differentially regulate the synthesis of tumour necrosis factor-alpha and interleukin-1 beta by human mononuclear cells. Immunology. 1991 Jan;72(1):56–60. [PMC free article] [PubMed] [Google Scholar]
  4. Harris N. L., Peach R. J., Ronchese F. CTLA4-Ig inhibits optimal T helper 2 cell development but not protective immunity or memory response to Nippostrongylus brasiliensis. Eur J Immunol. 1999 Jan;29(1):311–316. doi: 10.1002/(SICI)1521-4141(199901)29:01<311::AID-IMMU311>3.0.CO;2-B. [DOI] [PubMed] [Google Scholar]
  5. Harris N., Peach R., Naemura J., Linsley P. S., Le Gros G., Ronchese F. CD80 costimulation is essential for the induction of airway eosinophilia. J Exp Med. 1997 Jan 6;185(1):177–182. doi: 10.1084/jem.185.1.177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hofer M. F., Jirapongsananuruk O., Trumble A. E., Leung D. Y. Upregulation of B7.2, but not B7.1, on B cells from patients with allergic asthma. J Allergy Clin Immunol. 1998 Jan;101(1 Pt 1):96–102. doi: 10.1016/S0091-6749(98)70199-X. [DOI] [PubMed] [Google Scholar]
  7. Huang Y., Watanabe N., Ohtomo H. The involvement of CD80 and CD86 costimulatory molecules in the induction of eosinophilia in mice infected with Nippostrongylus brasiliensis. Int Arch Allergy Immunol. 1998 Sep;117 (Suppl 1):2–4. doi: 10.1159/000053561. [DOI] [PubMed] [Google Scholar]
  8. Ichikawa Y., Ninomiya H., Koga H., Tanaka M., Kinoshita M., Tokunaga N., Yano T., Oizumi K. Erythromycin reduces neutrophils and neutrophil-derived elastolytic-like activity in the lower respiratory tract of bronchiolitis patients. Am Rev Respir Dis. 1992 Jul;146(1):196–203. doi: 10.1164/ajrccm/146.1.196. [DOI] [PubMed] [Google Scholar]
  9. Iino Y., Toriyama M., Kudo K., Natori Y., Yuo A. Erythromycin inhibition of lipopolysaccharide-stimulated tumor necrosis factor alpha production by human monocytes in vitro. Ann Otol Rhinol Laryngol Suppl. 1992 Oct;157:16–20. doi: 10.1177/0003489492101s1005. [DOI] [PubMed] [Google Scholar]
  10. Ito J., Asano K., Tryka E., Kanai K., Yamamoto S., Hisamitsu T., Suzaki H. Suppressive effects of co-stimulatory molecule expressions on mouse splenocytes by anti-allergic agents in vitro. Mediators Inflamm. 2000;9(2):69–75. doi: 10.1080/096293500411523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jaffé A., Francis J., Rosenthal M., Bush A. Long-term azithromycin may improve lung function in children with cystic fibrosis. Lancet. 1998 Feb 7;351(9100):420–420. doi: 10.1016/S0140-6736(05)78360-4. [DOI] [PubMed] [Google Scholar]
  12. Jirapongsananuruk O., Hofer M. F., Trumble A. E., Norris D. A., Leung D. Y. Enhanced expression of B7.2 (CD86) in patients with atopic dermatitis: a potential role in the modulation of IgE synthesis. J Immunol. 1998 May 1;160(9):4622–4627. [PubMed] [Google Scholar]
  13. Kawamura M. S., Aiba S., Tagami H. The importance of CD54 and CD86 costimulation in T cells stimulated with Candida albicans and Dermatophagoides farinae antigens in patients with atopic dermatitis. Arch Dermatol Res. 1998 Nov;290(11):603–609. doi: 10.1007/s004030050359. [DOI] [PubMed] [Google Scholar]
  14. Kawazu K., Kurokawa M., Asano K., Mita A., Adachi M. Suppressive activity of a macrolide antibiotic, roxithromycin on co-stimulatory molecule expression on mouse splenocytes in vivo. Mediators Inflamm. 2000;9(1):39–43. doi: 10.1080/09629350050024375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Konno S., Asano K., Kurokawa M., Ikeda K., Okamoto K., Adachi M. Antiasthmatic activity of a macrolide antibiotic, roxithromycin: analysis of possible mechanisms in vitro and in vivo. Int Arch Allergy Immunol. 1994 Nov;105(3):308–316. doi: 10.1159/000236773. [DOI] [PubMed] [Google Scholar]
  16. Kündig T. M., Shahinian A., Kawai K., Mittrücker H. W., Sebzda E., Bachmann M. F., Mak T. W., Ohashi P. S. Duration of TCR stimulation determines costimulatory requirement of T cells. Immunity. 1996 Jul;5(1):41–52. doi: 10.1016/s1074-7613(00)80308-8. [DOI] [PubMed] [Google Scholar]
  17. Lenschow D. J., Walunas T. L., Bluestone J. A. CD28/B7 system of T cell costimulation. Annu Rev Immunol. 1996;14:233–258. doi: 10.1146/annurev.immunol.14.1.233. [DOI] [PubMed] [Google Scholar]
  18. Loh R. K., Jabara H. H., Geha R. S. Disodium cromoglycate inhibits S mu-->S epsilon deletional switch recombination and IgE synthesis in human B cells. J Exp Med. 1994 Aug 1;180(2):663–671. doi: 10.1084/jem.180.2.663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mark D. A., Donovan C. E., De Sanctis G. T., Krinzman S. J., Kobzik L., Linsley P. S., Sayegh M. H., Lederer J., Perkins D. L., Finn P. W. Both CD80 and CD86 co-stimulatory molecules regulate allergic pulmonary inflammation. Int Immunol. 1998 Nov;10(11):1647–1655. doi: 10.1093/intimm/10.11.1647. [DOI] [PubMed] [Google Scholar]
  20. Miyachi Y., Yoshioka A., Imamura S., Niwa Y. Effect of antibiotics on the generation of reactive oxygen species. J Invest Dermatol. 1986 Apr;86(4):449–453. doi: 10.1111/1523-1747.ep12285793. [DOI] [PubMed] [Google Scholar]
  21. Miyatake H., Suzuki K., Taki F., Takagi K., Satake T. Effect of erythromycin on bronchial hyperresponsiveness in patients with bronchial asthma. Arzneimittelforschung. 1991 May;41(5):552–556. [PubMed] [Google Scholar]
  22. Miyatake H., Taki F., Taniguchi H., Suzuki R., Takagi K., Satake T. Erythromycin reduces the severity of bronchial hyperresponsiveness in asthma. Chest. 1991 Mar;99(3):670–673. doi: 10.1378/chest.99.3.670. [DOI] [PubMed] [Google Scholar]
  23. Morikawa H., Nagashima S. The role of costimulatory molecules (B7-1 and B7-2) on allergen-stimulated B cells in cedar pollinosis subjects. Clin Exp Allergy. 2000 Mar;30(3):383–392. doi: 10.1046/j.1365-2222.2000.00713.x. [DOI] [PubMed] [Google Scholar]
  24. Morimoto C., Torimoto Y., Levinson G., Rudd C. E., Schrieber M., Dang N. H., Letvin N. L., Schlossman S. F. 1F7, a novel cell surface molecule, involved in helper function of CD4 cells. J Immunol. 1989 Dec 1;143(11):3430–3439. [PubMed] [Google Scholar]
  25. Nakada M., Nishizaki K., Yoshino T., Okano M., Masuda Y., Ohta N., Akagi T. CD86 (B7-2) antigen on B cells from atopic patients shows selective, antigen-specific upregulation. Allergy. 1998 May;53(5):527–531. doi: 10.1111/j.1398-9995.1998.tb04091.x. [DOI] [PubMed] [Google Scholar]
  26. Plewig G., Schöpf E. Anti-inflammatory effects of antimicrobial agents: an in vivo study. J Invest Dermatol. 1975 Dec;65(6):532–536. doi: 10.1111/1523-1747.ep12610281. [DOI] [PubMed] [Google Scholar]
  27. Sacha P. T., Zaremba M. L., Jakoniuk P. Wpływ antybiotyków na fagocytarna i bakteriobójcza aktywnoś króliczych makrofagów otrzewnowych stymulowanych przesaczem hodowli limfocytów T. Med Dosw Mikrobiol. 1999;51(3-4):399–412. [PubMed] [Google Scholar]
  28. Sato J., Asakura K., Murakami M., Uede T., Kataura A. Topical CTLA4-Ig suppresses ongoing mucosal immune response in presensitized murine model of allergic rhinitis. Int Arch Allergy Immunol. 1999 Jul;119(3):197–204. doi: 10.1159/000024195. [DOI] [PubMed] [Google Scholar]
  29. Schwartz R. H. Costimulation of T lymphocytes: the role of CD28, CTLA-4, and B7/BB1 in interleukin-2 production and immunotherapy. Cell. 1992 Dec 24;71(7):1065–1068. doi: 10.1016/s0092-8674(05)80055-8. [DOI] [PubMed] [Google Scholar]
  30. Suzaki H., Asano K., Ohki S., Kanai K., Mizutani T., Hisamitsu T. Suppressive activity of a macrolide antibiotic, roxithromycin, on pro-inflammatory cytokine production in vitro and in vivo. Mediators Inflamm. 1999;8(4-5):199–204. doi: 10.1080/09629359990351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Tsuyuki S., Tsuyuki J., Einsle K., Kopf M., Coyle A. J. Costimulation through B7-2 (CD86) is required for the induction of a lung mucosal T helper cell 2 (TH2) immune response and altered airway responsiveness. J Exp Med. 1997 May 5;185(9):1671–1679. doi: 10.1084/jem.185.9.1671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Van Neerven R. J., Van de Pol M. M., Van der Zee J. S., Stiekema F. E., De Boer M., Kapsenberg M. L. Requirement of CD28-CD86 costimulation for allergen-specific T cell proliferation and cytokine expression. Clin Exp Allergy. 1998 Jul;28(7):808–816. doi: 10.1046/j.1365-2222.1998.00306.x. [DOI] [PubMed] [Google Scholar]
  33. Worm M., Henz B. M. Molecular regulation of human IgE synthesis. J Mol Med (Berl) 1997 Jun;75(6):440–447. doi: 10.1007/s001090050129. [DOI] [PubMed] [Google Scholar]
  34. de Boer M., Kasran A., Kwekkeboom J., Walter H., Vandenberghe P., Ceuppens J. L. Ligation of B7 with CD28/CTLA-4 on T cells results in CD40 ligand expression, interleukin-4 secretion and efficient help for antibody production by B cells. Eur J Immunol. 1993 Dec;23(12):3120–3125. doi: 10.1002/eji.1830231212. [DOI] [PubMed] [Google Scholar]

Articles from Mediators of Inflammation are provided here courtesy of Wiley

RESOURCES