Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Jul;178(14):4115–4121. doi: 10.1128/jb.178.14.4115-4121.1996

Effects of T4 phage infection and anaerobiosis upon nucleotide pools and mutagenesis in nucleoside diphosphokinase-defective Escherichia coli strains.

X Zhang 1, Q Lu 1, M Inouye 1, C K Mathews 1
PMCID: PMC178168  PMID: 8763939

Abstract

Bacteriophage T4 encodes nearly all of its own enzymes for synthesizing DNA and its precursors. An exception is nucleoside diphosphokinase (ndk gene product), which catalyzes the synthesis of ribonucleoside triphosphates and deoxyribonucleoside triphosphates (dNTPs) from the corresponding diphosphates. Surprisingly, an Escherichia coli ndk deletion strain grows normally and supports T4 infection. As shown elsewhere, these ndk mutant cells display both a mutator phenotype and deoxyribonucleotide pool abnormalities. However, after T4 infection, both dNTP pools and spontaneous mutation frequencies are near normal. An E. coli strain carrying deletions in ndk and pyrA and pyrF, the structural genes for both pyruvate kinases, also grows and supports T4 infection. We examined anaerobic E. coli cultures because of reports that in anaerobiosis, pyruvate kinase represents the major route for nucleoside triphosphate synthesis in the absence of nucleoside diphosphokinase. The dNTP pool imbalances and the mutator phenotype are less pronounced in the anaerobic than in the corresponding aerobic ndk mutant strains. Anaerobic dNTP pool data, which have not been reported before, reveal a disproportionate reduction in dGTP, relative to the other pools, when aerobic and anaerobic conditions are compared. The finding that mutagenesis and pool imbalances are mitigated in both anaerobic and T4-infected cultures provides strong, if circumstantial, evidence that the mutator phenotype of ndk mutant cells is a result of the dNTP imbalance. Also, the viability of these cells indicates the existence of a second enzyme system in addition to nucleoside diphosphokinase for nucleoside triphosphate synthesis.

Full Text

The Full Text of this article is available as a PDF (308.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen J. R., Lasser G. W., Goldman D. A., Booth J. W., Mathews C. K. T4 phage deoxyribonucleotide-synthesizing enzyme complex. Further studies on enzyme composition and regulation. J Biol Chem. 1983 May 10;258(9):5746–5753. [PubMed] [Google Scholar]
  2. Darè E., Zhang L. H., Jenssen D., Bianchi V. Molecular analysis of mutations in the hprt gene of V79 hamster fibroblasts: effects of imbalances in the dCTP, dGTP and dTTP pools. J Mol Biol. 1995 Oct 6;252(5):514–521. doi: 10.1006/jmbi.1995.0516. [DOI] [PubMed] [Google Scholar]
  3. Eliasson R., Pontis E., Sun X., Reichard P. Allosteric control of the substrate specificity of the anaerobic ribonucleotide reductase from Escherichia coli. J Biol Chem. 1994 Oct 21;269(42):26052–26057. [PubMed] [Google Scholar]
  4. Fowler R. G., Erickson J. A., Isbell R. J. Activity of the Escherichia coli mutT mutator allele in an anaerobic environment. J Bacteriol. 1994 Dec;176(24):7727–7729. doi: 10.1128/jb.176.24.7727-7729.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fukuchi T., Nikawa J., Kimura N., Watanabe K. Isolation, overexpression and disruption of a Saccharomyces cerevisiae YNK gene encoding nucleoside diphosphate kinase. Gene. 1993 Jul 15;129(1):141–146. doi: 10.1016/0378-1119(93)90710-k. [DOI] [PubMed] [Google Scholar]
  6. Garrido-Pertierra A., Cooper R. A. Evidence for two distinct pyruvate kinase genes in Escherichia coli K-12. FEBS Lett. 1983 Oct 17;162(2):420–422. doi: 10.1016/0014-5793(83)80799-6. [DOI] [PubMed] [Google Scholar]
  7. Ji J. P., Mathews C. K. Analysis of mutagenesis induced by a thermolabile T4 phage deoxycytidylate hydroxymethylase suggests localized deoxyribonucleotide pool imbalance. Mol Gen Genet. 1991 Apr;226(1-2):257–264. doi: 10.1007/BF00273611. [DOI] [PubMed] [Google Scholar]
  8. Kunz B. A., Kohalmi S. E., Kunkel T. A., Mathews C. K., McIntosh E. M., Reidy J. A. International Commission for Protection Against Environmental Mutagens and Carcinogens. Deoxyribonucleoside triphosphate levels: a critical factor in the maintenance of genetic stability. Mutat Res. 1994 Aug;318(1):1–64. doi: 10.1016/0165-1110(94)90006-x. [DOI] [PubMed] [Google Scholar]
  9. Lu Q., Zhang X., Almaula N., Mathews C. K., Inouye M. The gene for nucleoside diphosphate kinase functions as a mutator gene in Escherichia coli. J Mol Biol. 1995 Dec 1;254(3):337–341. doi: 10.1006/jmbi.1995.0620. [DOI] [PubMed] [Google Scholar]
  10. Mathews C. K. Biochemistry of deoxyribonucleic acid-defective amber mutants of bacteriophage T4. 3. Nucleotide pools. J Biol Chem. 1972 Nov 25;247(22):7430–7438. [PubMed] [Google Scholar]
  11. Mathews C. K. Enzyme organization in DNA precursor biosynthesis. Prog Nucleic Acid Res Mol Biol. 1993;44:167–203. doi: 10.1016/s0079-6603(08)60220-2. [DOI] [PubMed] [Google Scholar]
  12. Moen L. K., Howell M. L., Lasser G. W., Mathews C. K. T4 phage deoxyribonucleoside triphosphate synthetase: purification of an enzyme complex and identification of gene products required for integrity. J Mol Recognit. 1988 Feb;1(1):48–57. doi: 10.1002/jmr.300010109. [DOI] [PubMed] [Google Scholar]
  13. North T. W., Bestwick R. K., Mathews C. K. Detection of activities that interfere with the enzymatic assay of deoxyribonucleoside 5'-triphosphates. J Biol Chem. 1980 Jul 25;255(14):6640–6645. [PubMed] [Google Scholar]
  14. Price A. R., Warner H. R. A structural gene for bacteriophage T4-induced deoxycytidine triphosphate-deoxyuridine triphosphage nucleotidohydrolase. Virology. 1968 Nov;36(3):523–526. doi: 10.1016/0042-6822(68)90183-9. [DOI] [PubMed] [Google Scholar]
  15. Ray N. B., Mathews C. K. Nucleoside diphosphokinase: a functional link between intermediary metabolism and nucleic acid synthesis. Curr Top Cell Regul. 1992;33:343–357. doi: 10.1016/b978-0-12-152833-1.50025-3. [DOI] [PubMed] [Google Scholar]
  16. Reddy G. P., Mathews C. K. Functional compartmentation of DNA precursors in T4 phage-infected bacteria. J Biol Chem. 1978 May 25;253(10):3461–3467. [PubMed] [Google Scholar]
  17. Reichard P. Interactions between deoxyribonucleotide and DNA synthesis. Annu Rev Biochem. 1988;57:349–374. doi: 10.1146/annurev.bi.57.070188.002025. [DOI] [PubMed] [Google Scholar]
  18. Saeki T., Hori M., Umezawa H. Effect of desdanine on nucleoside diphosphate kinase and pyruvate kinase of Escherichia coli. J Antibiot (Tokyo) 1975 Dec;28(12):974–981. doi: 10.7164/antibiotics.28.974. [DOI] [PubMed] [Google Scholar]
  19. Saeki T., Hori M., Umezawa H. Kinetic studies on the inhibition of nucleoside diphosphate kinase by desdanine. J Biochem. 1974 Sep;76(3):623–629. doi: 10.1093/oxfordjournals.jbchem.a130606. [DOI] [PubMed] [Google Scholar]
  20. Sargent R. G., Ji J. P., Mun B., Mathews C. K. Ribonucleotide reductase: a determinant of 5-bromodeoxyuridine mutagenesis in phage T4. Mol Gen Genet. 1989 May;217(1):13–19. doi: 10.1007/BF00330936. [DOI] [PubMed] [Google Scholar]
  21. Sargent R. G., Mathews C. K. Imbalanced deoxyribonucleoside triphosphate pools and spontaneous mutation rates determined during dCMP deaminase-defective bacteriophage T4 infections. J Biol Chem. 1987 Apr 25;262(12):5546–5553. [PubMed] [Google Scholar]
  22. Sun X., Harder J., Krook M., Jörnvall H., Sjöberg B. M., Reichard P. A possible glycine radical in anaerobic ribonucleotide reductase from Escherichia coli: nucleotide sequence of the cloned nrdD gene. Proc Natl Acad Sci U S A. 1993 Jan 15;90(2):577–581. doi: 10.1073/pnas.90.2.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Young P., Ohman M., Xu M. Q., Shub D. A., Sjöberg B. M. Intron-containing T4 bacteriophage gene sunY encodes an anaerobic ribonucleotide reductase. J Biol Chem. 1994 Aug 12;269(32):20229–20232. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES