Abstract
BACKGROUND: The life expectancy of patients with cystic fibrosis (CF) is largely dependent on the pulmonary disease severity and progress. Malnutrition may be an important complicating factor in active and chronic lung disease. AIMS: The focus of this study was to investigate several inflammatory markers in pancreatic-insufficient CF patients with different enzyme treatment regimens. METHODS: CF patients with pancreatic insufficiency were examined at a time of symptomatic exacerbation of their lung disease. Group A (n = 11) regularly received microspheric enzymes. Group B (n = 8) were treated with enzymes during the hospitalization period only and demonstrated the presence of malnutrition. Inflammatory markers in the sputa (neutrophil elastase activity, interleukin-8 and tumour necrosis factor-alpha levels) and in the peripheral blood (plasma malondialdehyde (MDA), lymphocyte response to PHA, and the cell sensitivity to steroid suppression) have been investigated. RESULTS: During acute lung exacerbation, group B demonstrated reduced levels of lymphocyte proliferation. This parameter was normalized after combined antibiotic and pancreatic enzyme therapy. Simultaneously, plasma MDA in group B markedly increased following treatment. For this group, a significant positive linear association between values of plasma MDA and lymphocyte proliferation has been observed. For group A, neither the same correlation nor changes in MDA levels and lymphocyte proliferation have been found. CONCLUSIONS: Our data indicate that acute lung exacerbation in malnourished CF patients may be associated with alteration in T-lymphocyte activity. Adequate therapy normalizes lymphocyte function but results in systemic oxidative stress.
Full Text
The Full Text of this article is available as a PDF (272.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baeuerle P. A., Henkel T. Function and activation of NF-kappa B in the immune system. Annu Rev Immunol. 1994;12:141–179. doi: 10.1146/annurev.iy.12.040194.001041. [DOI] [PubMed] [Google Scholar]
- Borowitz D. The interrelationship of nutrition and pulmonary function in patients with cystic fibrosis. Curr Opin Pulm Med. 1996 Nov;2(6):457–461. [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Brogdon W. G., Dickinson C. M. A microassay system for measuring esterase activity and protein concentration in small samples and in high-pressure liquid chromatography eluate fractions. Anal Biochem. 1983 Jun;131(2):499–503. doi: 10.1016/0003-2697(83)90204-x. [DOI] [PubMed] [Google Scholar]
- Brown R. K., Kelly F. J. Role of free radicals in the pathogenesis of cystic fibrosis. Thorax. 1994 Aug;49(8):738–742. doi: 10.1136/thx.49.8.738. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clandinin M. T. Infant nutrition: effects of lipid on later life. Curr Opin Lipidol. 1995 Feb;6(1):28–31. doi: 10.1097/00041433-199502000-00007. [DOI] [PubMed] [Google Scholar]
- Durie P. R., Pencharz P. B. Cystic fibrosis: nutrition. Br Med Bull. 1992 Oct;48(4):823–846. doi: 10.1093/oxfordjournals.bmb.a072580. [DOI] [PubMed] [Google Scholar]
- Durieu I., Peyrol S., Gindre D., Bellon G., Durand D. V., Pacheco Y. Subepithelial fibrosis and degradation of the bronchial extracellular matrix in cystic fibrosis. Am J Respir Crit Care Med. 1998 Aug;158(2):580–588. doi: 10.1164/ajrccm.158.2.9707126. [DOI] [PubMed] [Google Scholar]
- Grimble R. F., Tappia P. S. Modulation of pro-inflammatory cytokine biology by unsaturated fatty acids. Z Ernahrungswiss. 1998;37 (Suppl 1):57–65. [PubMed] [Google Scholar]
- Grum C. M., Chauncey J. B. Conventional mechanical ventilation. Clin Chest Med. 1988 Mar;9(1):37–46. [PubMed] [Google Scholar]
- Hull J., Vervaart P., Grimwood K., Phelan P. Pulmonary oxidative stress response in young children with cystic fibrosis. Thorax. 1997 Jun;52(6):557–560. doi: 10.1136/thx.52.6.557. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaminskaia G. O., Zhukova N. L., Stepanian I. E. Sravnenie dvukh metodov opredeleniia i otsenki poluchennykh rezul'tatov pri issledovanii élastoliticheskoi aktivnosti mokroty. Lab Delo. 1984;(2):110–113. [PubMed] [Google Scholar]
- Koch C., Høiby N. Pathogenesis of cystic fibrosis. Lancet. 1993 Apr 24;341(8852):1065–1069. doi: 10.1016/0140-6736(93)92422-p. [DOI] [PubMed] [Google Scholar]
- Konstan M. W., Hilliard K. A., Norvell T. M., Berger M. Bronchoalveolar lavage findings in cystic fibrosis patients with stable, clinically mild lung disease suggest ongoing infection and inflammation. Am J Respir Crit Care Med. 1994 Aug;150(2):448–454. doi: 10.1164/ajrccm.150.2.8049828. [DOI] [PubMed] [Google Scholar]
- McGrath L. T., Mallon P., Dowey L., Silke B., McClean E., McDonnell M., Devine A., Copeland S., Elborn S. Oxidative stress during acute respiratory exacerbations in cystic fibrosis. Thorax. 1999 Jun;54(6):518–523. doi: 10.1136/thx.54.6.518. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nowak D., Zieba M., Zawiasa D., Rozniecki J., Król M. Changes of serum concentration of lipid peroxidation products in patients with pneumonia. Monaldi Arch Chest Dis. 1996 Jun;51(3):188–193. [PubMed] [Google Scholar]
- Pukhalsky A. L., Kalashnikova E. A., Lyashko V. N., Pevnitsky L. A. Inhibition of phytohemagglutinin-induced lymphocyte proliferation by dexamethasone: mechanisms of individual susceptibility. Int J Immunopharmacol. 1990;12(6):657–663. doi: 10.1016/0192-0561(90)90103-t. [DOI] [PubMed] [Google Scholar]
- Pukhalsky A. L., Kapranov N. I., Kalashnikova E. A., Shmarina G. V., Shabalova L. A., Kokarovtseva S. N., Pukhalskaya D. A., Kashirskaja N. J., Simonova O. I. Inflammatory markers in cystic fibrosis patients with lung Pseudomonas aeruginosa infection. Mediators Inflamm. 1999;8(3):159–167. doi: 10.1080/09629359990496. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raber J., Bast A. Changes in receptor response by the effect of disease on membrane fluidity. Med Hypotheses. 1989 Mar;28(3):169–171. doi: 10.1016/0306-9877(89)90046-7. [DOI] [PubMed] [Google Scholar]
- Reilly P. M., Schiller H. J., Bulkley G. B. Pharmacologic approach to tissue injury mediated by free radicals and other reactive oxygen metabolites. Am J Surg. 1991 Apr;161(4):488–503. doi: 10.1016/0002-9610(91)91120-8. [DOI] [PubMed] [Google Scholar]
- Schoenherr W. D., Jewell D. E. Nutritional modification of inflammatory diseases. Semin Vet Med Surg (Small Anim) 1997 Aug;12(3):212–222. doi: 10.1016/s1096-2867(97)80035-7. [DOI] [PubMed] [Google Scholar]
- Scholz W., Isakov N., Mally M. I., Theofilopoulos A. N., Altman A. Lpr T cell hyporesponsiveness to mitogens linked to deficient receptor-stimulated phosphoinositide hydrolysis. J Biol Chem. 1988 Mar 15;263(8):3626–3631. [PubMed] [Google Scholar]
- Suter S., Schaad U. B., Roux L., Nydegger U. E., Waldvogel F. A. Granulocyte neutral proteases and Pseudomonas elastase as possible causes of airway damage in patients with cystic fibrosis. J Infect Dis. 1984 Apr;149(4):523–531. doi: 10.1093/infdis/149.4.523. [DOI] [PubMed] [Google Scholar]
- Tribble D. L., Aw T. Y., Jones D. P. The pathophysiological significance of lipid peroxidation in oxidative cell injury. Hepatology. 1987 Mar-Apr;7(2):377–386. doi: 10.1002/hep.1840070227. [DOI] [PubMed] [Google Scholar]
- Van Delden C., Iglewski B. H. Cell-to-cell signaling and Pseudomonas aeruginosa infections. Emerg Infect Dis. 1998 Oct-Dec;4(4):551–560. doi: 10.3201/eid0404.980405. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Visser L., Blout E. R. The use of p-nitrophenyl N-tert-butyloxycarbonyl-L-alaninate as substrate for elastase. Biochim Biophys Acta. 1972 Apr 7;268(1):257–260. doi: 10.1016/0005-2744(72)90223-9. [DOI] [PubMed] [Google Scholar]
- Wilson D. C., Pencharz P. B. Nutrition and cystic fibrosis. Nutrition. 1998 Oct;14(10):792–795. doi: 10.1016/s0899-9007(98)00086-0. [DOI] [PubMed] [Google Scholar]
- Yu H., Nasr S. Z., Deretic V. Innate lung defenses and compromised Pseudomonas aeruginosa clearance in the malnourished mouse model of respiratory infections in cystic fibrosis. Infect Immun. 2000 Apr;68(4):2142–2147. doi: 10.1128/iai.68.4.2142-2147.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zuin G., Principi N. Trace elements and vitamins in immunomodulation in infancy and childhood. Eur J Cancer Prev. 1997 Mar;6 (Suppl 1):S69–S77. doi: 10.1097/00008469-199703001-00012. [DOI] [PubMed] [Google Scholar]
