Skip to main content
Mediators of Inflammation logoLink to Mediators of Inflammation
. 2001 Apr;10(2):93–96. doi: 10.1080/09629350120054572

Administration of isoferulic acid improved the survival rate of lethal influenza virus pneumonia in mice.

S Sakai 1, H Ochiai 1, N Mantani 1, T Kogure 1, N Shibahara 1, K Terasawa 1
PMCID: PMC1781695  PMID: 11405556

Abstract

BACKGROUND: Isoferulic acid (IFA) is a main active ingredient of the rhizoma of Cimicifuga beracleifolia, which is used frequently in Japanese traditional medicine as an anti-inflammatory drug. It has been revealed that IFA inhibits the production of macrophage inflammatory protein-2 (MIP-2), which is a murine counterpart of the chemokine family that may contribute to the pathogenesis of inflammatory diseases through the chemotactic activity for inflammatory and immune effector cells. AIM OF THE STUDY: In this study, we investigated the therapeutic effect of IFA on the progression of lethal influenza virus pneumonia in mice by comparison with that of dexamethasone (DX), a potent inhibitor for various inflammatory cytokines including MIP-2. METHODS: Mice were infected by intranasal inoculation of influenza virus under ether anesthesia. The IFA or DX was given by oral administration once daily for 4 days after infection. After infection, the survival rate and the change in body weight were daily monitored. RESULTS: IFA administration markedly improved the survival rate and body weight loss of influenza virus-infected mice in a suitable dose range (0.5 mg/day). However, DX administration did not show a beneficial effect at any dose. CONCLUSION: These data suggested that IFA is a novel tool not only for the intervention therapy, but also for the studies on the pathogenesis of influenza virus-induced pneumonia.

Full Text

The Full Text of this article is available as a PDF (133.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akaike T., Noguchi Y., Ijiri S., Setoguchi K., Suga M., Zheng Y. M., Dietzschold B., Maeda H. Pathogenesis of influenza virus-induced pneumonia: involvement of both nitric oxide and oxygen radicals. Proc Natl Acad Sci U S A. 1996 Mar 19;93(6):2448–2453. doi: 10.1073/pnas.93.6.2448. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barnes P. J., Adcock I. Anti-inflammatory actions of steroids: molecular mechanisms. Trends Pharmacol Sci. 1993 Dec;14(12):436–441. doi: 10.1016/0165-6147(93)90184-l. [DOI] [PubMed] [Google Scholar]
  3. Blake D. R., Hall N. D., Bacon P. A., Dieppe P. A., Halliwell B., Gutteridge J. M. Effect of a specific iron chelating agent on animal models of inflammation. Ann Rheum Dis. 1983 Feb;42(1):89–93. doi: 10.1136/ard.42.1.89. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Driscoll K. E. Macrophage inflammatory proteins: biology and role in pulmonary inflammation. Exp Lung Res. 1994 Nov-Dec;20(6):473–490. doi: 10.3109/01902149409031733. [DOI] [PubMed] [Google Scholar]
  5. Hirabayashi T., Ochiai H., Sakai S., Nakajima K., Terasawa K. Inhibitory effect of ferulic acid and isoferulic acid on murine interleukin-8 production in response to influenza virus infections in vitro and in vivo. Planta Med. 1995 Jun;61(3):221–226. doi: 10.1055/s-2006-958060. [DOI] [PubMed] [Google Scholar]
  6. Johnson W. J., Muirhead K. A., Meunier P. C., Votta B. J., Schmitt T. C., DiMartino M. J., Hanna N. Macrophage activation in rat models of inflammation and arthritis. Systemic activation precedes arthritis induction and progression. Arthritis Rheum. 1986 Sep;29(9):1122–1130. doi: 10.1002/art.1780290910. [DOI] [PubMed] [Google Scholar]
  7. Moncada S., Palmer R. M., Higgs E. A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991 Jun;43(2):109–142. [PubMed] [Google Scholar]
  8. Ochiai H., Ikesue A., Kurokawa M., Nakajima K., Nakagawa H. Enhanced production of rat interleukin-8 by in vitro and in vivo infections with influenza A NWS virus. J Virol. 1993 Nov;67(11):6811–6814. doi: 10.1128/jvi.67.11.6811-6814.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Oda T., Akaike T., Hamamoto T., Suzuki F., Hirano T., Maeda H. Oxygen radicals in influenza-induced pathogenesis and treatment with pyran polymer-conjugated SOD. Science. 1989 May 26;244(4907):974–976. doi: 10.1126/science.2543070. [DOI] [PubMed] [Google Scholar]
  10. Pinner R. W., Teutsch S. M., Simonsen L., Klug L. A., Graber J. M., Clarke M. J., Berkelman R. L. Trends in infectious diseases mortality in the United States. JAMA. 1996 Jan 17;275(3):189–193. [PubMed] [Google Scholar]
  11. Ratcliffe D. R., Nolin S. L., Cramer E. B. Neutrophil interaction with influenza-infected epithelial cells. Blood. 1988 Jul;72(1):142–149. [PubMed] [Google Scholar]
  12. Ratcliffe D., Migliorisi G., Cramer E. Translocation of influenza virus by migrating neutrophils. Cell Mol Biol. 1992 Feb;38(1):63–70. [PubMed] [Google Scholar]
  13. Sakai S., Kawamata H., Mantani N., Kogure T., Shimada Y., Terasawa K., Sakai T., Imanishi N., Ochiai H. Therapeutic effect of anti-macrophage inflammatory protein 2 antibody on influenza virus-induced pneumonia in mice. J Virol. 2000 Mar;74(5):2472–2476. doi: 10.1128/jvi.74.5.2472-2476.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Sakai S., Ochiai H., Nakajima K., Terasawa K. Inhibitory effect of ferulic acid on macrophage inflammatory protein-2 production in a murine macrophage cell line, RAW264.7. Cytokine. 1997 Apr;9(4):242–248. doi: 10.1006/cyto.1996.0160. [DOI] [PubMed] [Google Scholar]

Articles from Mediators of Inflammation are provided here courtesy of Wiley

RESOURCES