Skip to main content
Mediators of Inflammation logoLink to Mediators of Inflammation
. 2001 Oct;10(5):237–243. doi: 10.1080/09629350120093704

Analysis of local and systemic inflammatory responses induced by polymicrobial peritonitis in mice.

T S Fröde 1, S I Ferreira 1, Y S Medeiros 1
PMCID: PMC1781716  PMID: 11759107

Abstract

BACKGROUND: Abdominal sepsis induces a local production of proinflammatory mediators that may trigger both septic shock and organ-system dysfunction. AIMS: The present study analyzed exudation, cell migration, and CD11a and CD18 subset cells of both local and systemic responses induced by fecal peritonitis in mice. METHODS: Animals were anesthetized and, after performing a midline incision in the abdomen, the cecum was ligated and punctured twice with a needle. Sham-operated animals were included. Some groups were previously treated with Evans blue dye (intravenously) to further evaluate the amount of tissue and abdominal cavity leakages. RESULTS: Fecal peritonitis triggered a local inflammatory reaction with an increased number of leukocytes and exudation between 6 and 48 h (p < 0.01). Although CD11a/CD18-positive cells in the abdomen peaked after 24h, a significant decrease of them was detected after 48 h (p < 0.05). At the studied period of time (6-48 h), different degrees of exudation in several organs occurred, whereas a significant late recruitment (24 h) of CD11a/CD18 cells into the lungs was observed. CONCLUSIONS: In this model, cell migration and exudation at the site of injury occurred in parallel. However, in the lungs, the recruitment of leukocytes that express CD11a/CD18 adhesion molecules constitutes a non-dependent event in relation to fluid leakage accumulation at this site.

Full Text

The Full Text of this article is available as a PDF (223.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexander H. R., Doherty G. M., Venzon D. J., Merino M. J., Fraker D. L., Norton J. A. Recombinant interleukin-1 receptor antagonist (IL-1ra): effective therapy against gram-negative sepsis in rats. Surgery. 1992 Aug;112(2):188–194. [PubMed] [Google Scholar]
  2. Creasey A. A., Stevens P., Kenney J., Allison A. C., Warren K., Catlett R., Hinshaw L., Taylor F. B., Jr Endotoxin and cytokine profile in plasma of baboons challenged with lethal and sublethal Escherichia coli. Circ Shock. 1991 Feb;33(2):84–91. [PubMed] [Google Scholar]
  3. Doerschuk C. M., Winn R. K., Coxson H. O., Harlan J. M. CD18-dependent and -independent mechanisms of neutrophil emigration in the pulmonary and systemic microcirculation of rabbits. J Immunol. 1990 Mar 15;144(6):2327–2333. [PubMed] [Google Scholar]
  4. Fink M. P., Heard S. O. Laboratory models of sepsis and septic shock. J Surg Res. 1990 Aug;49(2):186–196. doi: 10.1016/0022-4804(90)90260-9. [DOI] [PubMed] [Google Scholar]
  5. Flaherty S. F., Golenbock D. T., Milham F. H., Ingalls R. R. CD11/CD18 leukocyte integrins: new signaling receptors for bacterial endotoxin. J Surg Res. 1997 Nov;73(1):85–89. doi: 10.1006/jsre.1997.5195. [DOI] [PubMed] [Google Scholar]
  6. Hadjiminas D. J., McMasters K. M., Peyton J. C., Cheadle W. G. Tissue tumor necrosis factor mRNA expression following cecal ligation and puncture or intraperitoneal injection of endotoxin. J Surg Res. 1994 Jun;56(6):549–555. doi: 10.1006/jsre.1994.1088. [DOI] [PubMed] [Google Scholar]
  7. Hellewell P. G., Young S. K., Henson P. M., Worthen G. S. Disparate role of the beta 2-integrin CD18 in the local accumulation of neutrophils in pulmonary and cutaneous inflammation in the rabbit. Am J Respir Cell Mol Biol. 1994 Apr;10(4):391–398. doi: 10.1165/ajrcmb.10.4.7510985. [DOI] [PubMed] [Google Scholar]
  8. Hesse D. G., Tracey K. J., Fong Y., Manogue K. R., Palladino M. A., Jr, Cerami A., Shires G. T., Lowry S. F. Cytokine appearance in human endotoxemia and primate bacteremia. Surg Gynecol Obstet. 1988 Feb;166(2):147–153. [PubMed] [Google Scholar]
  9. Kilgore K. S., Ward P. A., Warren J. S. Neutrophil adhesion to human endothelial cells is induced by the membrane attack complex: the roles of P-selectin and platelet activating factor. Inflammation. 1998 Dec;22(6):583–598. doi: 10.1023/a:1022362413939. [DOI] [PubMed] [Google Scholar]
  10. Mizgerd J. P., Quinlan W. M., LeBlanc B. W., Kutkoski G. J., Bullard D. C., Beaudet A. L., Doerschuk C. M. Combinatorial requirements for adhesion molecules in mediating neutrophil emigration during bacterial peritonitis in mice. J Leukoc Biol. 1998 Sep;64(3):291–297. doi: 10.1002/jlb.64.3.291. [DOI] [PubMed] [Google Scholar]
  11. Morrison D. C., Ryan J. L. Endotoxins and disease mechanisms. Annu Rev Med. 1987;38:417–432. doi: 10.1146/annurev.me.38.020187.002221. [DOI] [PubMed] [Google Scholar]
  12. Murata A., Toda H., Uda K., Hayashida H., Kato T., Nakagawa H., Yokoyama S., Morishita H., Yamakawa T., Hirose J. Protective effect of recombinant neutrophil elastase inhibitor (R-020) on sepsis-induced organ injury in rat. Inflammation. 1994 Aug;18(4):337–347. doi: 10.1007/BF01534432. [DOI] [PubMed] [Google Scholar]
  13. Natanson C., Eichenholz P. W., Danner R. L., Eichacker P. Q., Hoffman W. D., Kuo G. C., Banks S. M., MacVittie T. J., Parrillo J. E. Endotoxin and tumor necrosis factor challenges in dogs simulate the cardiovascular profile of human septic shock. J Exp Med. 1989 Mar 1;169(3):823–832. doi: 10.1084/jem.169.3.823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Natanson C., Hoffman W. D., Suffredini A. F., Eichacker P. Q., Danner R. L. Selected treatment strategies for septic shock based on proposed mechanisms of pathogenesis. Ann Intern Med. 1994 May 1;120(9):771–783. doi: 10.7326/0003-4819-120-9-199405010-00009. [DOI] [PubMed] [Google Scholar]
  15. Ohlsson K., Björk P., Bergenfeldt M., Hageman R., Thompson R. C. Interleukin-1 receptor antagonist reduces mortality from endotoxin shock. Nature. 1990 Dec 6;348(6301):550–552. doi: 10.1038/348550a0. [DOI] [PubMed] [Google Scholar]
  16. Parrillo J. E. Pathogenetic mechanisms of septic shock. N Engl J Med. 1993 May 20;328(20):1471–1477. doi: 10.1056/NEJM199305203282008. [DOI] [PubMed] [Google Scholar]
  17. Qin L., Quinlan W. M., Doyle N. A., Graham L., Sligh J. E., Takei F., Beaudet A. L., Doerschuk C. M. The roles of CD11/CD18 and ICAM-1 in acute Pseudomonas aeruginosa-induced pneumonia in mice. J Immunol. 1996 Dec 1;157(11):5016–5021. [PubMed] [Google Scholar]
  18. Walley K. R., Lukacs N. W., Standiford T. J., Strieter R. M., Kunkel S. L. Balance of inflammatory cytokines related to severity and mortality of murine sepsis. Infect Immun. 1996 Nov;64(11):4733–4738. doi: 10.1128/iai.64.11.4733-4738.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Wang P., Ba Z. F., Chaudry I. H. Mechanism of hepatocellular dysfunction during early sepsis. Key role of increased gene expression and release of proinflammatory cytokines tumor necrosis factor and interleukin-6. Arch Surg. 1997 Apr;132(4):364–370. doi: 10.1001/archsurg.1997.01430280038005. [DOI] [PubMed] [Google Scholar]
  20. Windsor A. C., Mullen P. G., Fowler A. A., Sugerman H. J. Role of the neutrophil in adult respiratory distress syndrome. Br J Surg. 1993 Jan;80(1):10–17. doi: 10.1002/bjs.1800800106. [DOI] [PubMed] [Google Scholar]
  21. Zimmermann M. Ethical guidelines for investigations of experimental pain in conscious animals. Pain. 1983 Jun;16(2):109–110. doi: 10.1016/0304-3959(83)90201-4. [DOI] [PubMed] [Google Scholar]
  22. van der Poll T., Marchant A., Buurman W. A., Berman L., Keogh C. V., Lazarus D. D., Nguyen L., Goldman M., Moldawer L. L., Lowry S. F. Endogenous IL-10 protects mice from death during septic peritonitis. J Immunol. 1995 Dec 1;155(11):5397–5401. [PubMed] [Google Scholar]

Articles from Mediators of Inflammation are provided here courtesy of Wiley

RESOURCES