Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Jul;178(14):4150–4156. doi: 10.1128/jb.178.14.4150-4156.1996

A newly discovered gene, tfuA, involved in the production of the ribosomally synthesized peptide antibiotic trifolitoxin.

B Breil 1, J Borneman 1, E W Triplett 1
PMCID: PMC178172  PMID: 8763943

Abstract

Trifolitoxin (TFX) is a gene-encoded, posttranslationally modified peptide antibiotic. Previously, we have shown that tfxABCDEFG from Rhizobium leguminosarum bv. trifolii T24 is sufficient to confer TFX production and resistance to nonproducing strains within a distinct taxonomic group of the alpha-proteobacteria (E. W. Triplett, B. T. Breil, and G. A. Splitter, Appl. Environ. Microbiol. 60:4163-4166, 1994). Here we describe strain Tn5-2, a Tn5 mutant of T24 defective in the production of TFX, whose insertion maps outside of the tfx cluster. It is not altered in growth compared with T24, nor does it inactivate TFX in its proximity. The wild-type analog of the mutated region of Tn5-2 was cloned. Sequencing, transcriptional fusion mutagenesis, and subcloning were used to identify tfuA, a gene involved in TFX production. On the basis of computer analysis, the putative TfuA protein has a mass of 72.9 kDa and includes a peroxidase motif but no transmembrane domains. TFX production studies show that extra copies of the tfxABCDEFG fragment increase TFX production in a T24 background while additional copies of tfuA do not. Lysate ribonuclease protection assays suggest that tfuA does not regulate transcription of tfxA. Upstream of tfuA are two open reading frames (ORFs). The putative product of ORF1 shows high similarity to the LysR family of transcriptional regulators. The putative product of ORF2 shows high similarity to the cytosine deaminase (CodA) of Escherichia coli.

Full Text

The Full Text of this article is available as a PDF (303.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bohannon D. E., Sonenshein A. L. Positive regulation of glutamate biosynthesis in Bacillus subtilis. J Bacteriol. 1989 Sep;171(9):4718–4727. doi: 10.1128/jb.171.9.4718-4727.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Breil B. T., Ludden P. W., Triplett E. W. DNA sequence and mutational analysis of genes involved in the production and resistance of the antibiotic peptide trifolitoxin. J Bacteriol. 1993 Jun;175(12):3693–3702. doi: 10.1128/jb.175.12.3693-3702.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chen H., Richardson A. E., Gartner E., Djordjevic M. A., Roughley R. J., Rolfe B. G. Construction of an Acid-Tolerant Rhizobium leguminosarum Biovar Trifolii Strain with Enhanced Capacity for Nitrogen Fixation. Appl Environ Microbiol. 1991 Jul;57(7):2005–2011. doi: 10.1128/aem.57.7.2005-2011.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Danielsen S., Kilstrup M., Barilla K., Jochimsen B., Neuhard J. Characterization of the Escherichia coli codBA operon encoding cytosine permease and cytosine deaminase. Mol Microbiol. 1992 May;6(10):1335–1344. doi: 10.1111/j.1365-2958.1992.tb00854.x. [DOI] [PubMed] [Google Scholar]
  5. Dowling D. N., Broughton W. J. Competition for nodulation of legumes. Annu Rev Microbiol. 1986;40:131–157. doi: 10.1146/annurev.mi.40.100186.001023. [DOI] [PubMed] [Google Scholar]
  6. Figurski D. H., Helinski D. R. Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1648–1652. doi: 10.1073/pnas.76.4.1648. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Genilloud O., Moreno F., Kolter R. DNA sequence, products, and transcriptional pattern of the genes involved in production of the DNA replication inhibitor microcin B17. J Bacteriol. 1989 Feb;171(2):1126–1135. doi: 10.1128/jb.171.2.1126-1135.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hansen J. N. Antibiotics synthesized by posttranslational modification. Annu Rev Microbiol. 1993;47:535–564. doi: 10.1146/annurev.mi.47.100193.002535. [DOI] [PubMed] [Google Scholar]
  9. Henikoff S., Haughn G. W., Calvo J. M., Wallace J. C. A large family of bacterial activator proteins. Proc Natl Acad Sci U S A. 1988 Sep;85(18):6602–6606. doi: 10.1073/pnas.85.18.6602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hernández-Chico C., San Millán J. L., Kolter R., Moreno F. Growth phase and ompR regulation of transcription of microcin B17 genes. J Bacteriol. 1986 Sep;167(3):1058–1065. doi: 10.1128/jb.167.3.1058-1065.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Inoue H., Nojima H., Okayama H. High efficiency transformation of Escherichia coli with plasmids. Gene. 1990 Nov 30;96(1):23–28. doi: 10.1016/0378-1119(90)90336-p. [DOI] [PubMed] [Google Scholar]
  12. Jack R. W., Sahl H. G. Unique peptide modifications involved in the biosynthesis of lantibiotics. Trends Biotechnol. 1995 Jul;13(7):269–278. doi: 10.1016/S0167-7799(00)88962-3. [DOI] [PubMed] [Google Scholar]
  13. Jack R. W., Tagg J. R., Ray B. Bacteriocins of gram-positive bacteria. Microbiol Rev. 1995 Jun;59(2):171–200. doi: 10.1128/mr.59.2.171-200.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Keen N. T., Tamaki S., Kobayashi D., Trollinger D. Improved broad-host-range plasmids for DNA cloning in gram-negative bacteria. Gene. 1988 Oct 15;70(1):191–197. doi: 10.1016/0378-1119(88)90117-5. [DOI] [PubMed] [Google Scholar]
  15. Kolter R., Moreno F. Genetics of ribosomally synthesized peptide antibiotics. Annu Rev Microbiol. 1992;46:141–163. doi: 10.1146/annurev.mi.46.100192.001041. [DOI] [PubMed] [Google Scholar]
  16. Kupke T., Kempter C., Jung G., Götz F. Oxidative decarboxylation of peptides catalyzed by flavoprotein EpiD. Determination of substrate specificity using peptide libraries and neutral loss mass spectrometry. J Biol Chem. 1995 May 12;270(19):11282–11289. doi: 10.1074/jbc.270.19.11282. [DOI] [PubMed] [Google Scholar]
  17. Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
  18. Parkinson J. S. Signal transduction schemes of bacteria. Cell. 1993 Jun 4;73(5):857–871. doi: 10.1016/0092-8674(93)90267-t. [DOI] [PubMed] [Google Scholar]
  19. Rodríguez-Sáinz M. C., Hernández-Chico C., Moreno F. Molecular characterization of pmbA, an Escherichia coli chromosomal gene required for the production of the antibiotic peptide MccB17. Mol Microbiol. 1990 Nov;4(11):1921–1932. doi: 10.1111/j.1365-2958.1990.tb02041.x. [DOI] [PubMed] [Google Scholar]
  20. Rumjanek N. G., Dobert R. C., van Berkum P., Triplett E. W. Common soybean inoculant strains in Brazil are members of Bradyrhizobium elkanii. Appl Environ Microbiol. 1993 Dec;59(12):4371–4373. doi: 10.1128/aem.59.12.4371-4373.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sahl H. G., Jack R. W., Bierbaum G. Biosynthesis and biological activities of lantibiotics with unique post-translational modifications. Eur J Biochem. 1995 Jun 15;230(3):827–853. doi: 10.1111/j.1432-1033.1995.tb20627.x. [DOI] [PubMed] [Google Scholar]
  22. Schwinghamer E. A., Belkengren R. P. Inhibition of rhizobia by a strain of Rhizobeium trifolii: some properties of the antibiotic and of the strain. Arch Mikrobiol. 1968;64(2):130–145. doi: 10.1007/BF00406972. [DOI] [PubMed] [Google Scholar]
  23. Shine J., Dalgarno L. The 3'-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1342–1346. doi: 10.1073/pnas.71.4.1342. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Staskawicz B., Dahlbeck D., Keen N., Napoli C. Molecular characterization of cloned avirulence genes from race 0 and race 1 of Pseudomonas syringae pv. glycinea. J Bacteriol. 1987 Dec;169(12):5789–5794. doi: 10.1128/jb.169.12.5789-5794.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Triplett E. W., Barta T. M. Trifolitoxin Production and Nodulation Are Necessary for the Expression of Superior Nodulation Competitiveness by Rhizobium leguminosarum bv. trifolii Strain T24 on Clover. Plant Physiol. 1987 Oct;85(2):335–342. doi: 10.1104/pp.85.2.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Triplett E. W., Breil B. T., Splitter G. A. Expression of tfx and sensitivity to the rhizobial peptide antibiotic trifolitoxin in a taxonomically distinct group of alpha-proteobacteria including the animal pathogen Brucella abortus. Appl Environ Microbiol. 1994 Nov;60(11):4163–4166. doi: 10.1128/aem.60.11.4163-4166.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Triplett E. W. Construction of a Symbiotically Effective Strain of Rhizobium leguminosarum bv. trifolii with Increased Nodulation Competitiveness. Appl Environ Microbiol. 1990 Jan;56(1):98–103. doi: 10.1128/aem.56.1.98-103.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Triplett E. W. Isolation of genes involved in nodulation competitiveness from Rhizobium leguminosarum bv. trifolii T24. Proc Natl Acad Sci U S A. 1988 Jun;85(11):3810–3814. doi: 10.1073/pnas.85.11.3810. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Triplett E. W., Sadowsky M. J. Genetics of competition for nodulation of legumes. Annu Rev Microbiol. 1992;46:399–428. doi: 10.1146/annurev.mi.46.100192.002151. [DOI] [PubMed] [Google Scholar]
  30. Vizán J. L., Hernández-Chico C., del Castillo I., Moreno F. The peptide antibiotic microcin B17 induces double-strand cleavage of DNA mediated by E. coli DNA gyrase. EMBO J. 1991 Feb;10(2):467–476. doi: 10.1002/j.1460-2075.1991.tb07969.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Yorgey P., Davagnino J., Kolter R. The maturation pathway of microcin B17, a peptide inhibitor of DNA gyrase. Mol Microbiol. 1993 Aug;9(4):897–905. doi: 10.1111/j.1365-2958.1993.tb01747.x. [DOI] [PubMed] [Google Scholar]
  32. del Castillo I., González-Pastor J. E., San Millán J. L., Moreno F. Nucleotide sequence of the Escherichia coli regulatory gene mprA and construction and characterization of mprA-deficient mutants. J Bacteriol. 1991 Jun;173(12):3924–3929. doi: 10.1128/jb.173.12.3924-3929.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES