Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Jul;178(14):4157–4165. doi: 10.1128/jb.178.14.4157-4165.1996

A new type of conjugative transposon encodes resistance to sulfamethoxazole, trimethoprim, and streptomycin in Vibrio cholerae O139.

M K Waldor 1, H Tschäpe 1, J J Mekalanos 1
PMCID: PMC178173  PMID: 8763944

Abstract

Vibrio cholerae O139 is the first non-O1 serogroup of V. cholerae to give rise to epidemic cholera. Apparently, this new serogroup arose from an El Tor O1 strain of V cholerae, but V. cholerae O139 is distinguishable from V. cholerae El Tor O1 by virtue of its novel antigenic structure and also its characteristic pattern of resistances to the antibiotics sulfamethoxazole, trimethoprim, streptomycin, and furazolidone. We found that the first three of these antibiotic resistances are carried on an approximately 62-kb self-transmissible, chromosomally integrating genetic element which we have termed the SXT element. This novel conjugative transposon-like element could be conjugally transferred from V. cholerae O139 to V cholerae O1 and Escherichia coli strains, where it integrated into the recipient chromosomes in a site-specific manner independent of recA. To study the potential virulence properties of the SXT element as well as to improve upon the live attenuated O139 vaccine strain Bengal-2, a large internal deletion in the SXT element was crossed on to the Bengal-2 chromosome. The resulting strain, Bengal-2.SXT(s), is sensitive to sulfamethoxazole and trimethoprim and colonizes the intestines of suckling mice as well as wild-type strains do, suggesting that the SXT element does not encode a colonization factor. Derivatives of Bengal-2.SXT(s) are predicted to be safe, antibiotic-sensitive, live attenuated vaccines for cholera due to the O139 serogroup.

Full Text

The Full Text of this article is available as a PDF (754.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albert M. J., Siddique A. K., Islam M. S., Faruque A. S., Ansaruzzaman M., Faruque S. M., Sack R. B. Large outbreak of clinical cholera due to Vibrio cholerae non-O1 in Bangladesh. Lancet. 1993 Mar 13;341(8846):704–704. doi: 10.1016/0140-6736(93)90481-u. [DOI] [PubMed] [Google Scholar]
  2. Bik E. M., Bunschoten A. E., Gouw R. D., Mooi F. R. Genesis of the novel epidemic Vibrio cholerae O139 strain: evidence for horizontal transfer of genes involved in polysaccharide synthesis. EMBO J. 1995 Jan 16;14(2):209–216. doi: 10.1002/j.1460-2075.1995.tb06993.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Butterton J. R., Beattie D. T., Gardel C. L., Carroll P. A., Hyman T., Killeen K. P., Mekalanos J. J., Calderwood S. B. Heterologous antigen expression in Vibrio cholerae vector strains. Infect Immun. 1995 Jul;63(7):2689–2696. doi: 10.1128/iai.63.7.2689-2696.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Calia K. E., Murtagh M., Ferraro M. J., Calderwood S. B. Comparison of Vibrio cholerae O139 with V. cholerae O1 classical and El Tor biotypes. Infect Immun. 1994 Apr;62(4):1504–1506. doi: 10.1128/iai.62.4.1504-1506.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Clewell D. B., Flannagan S. E., Jaworski D. D. Unconstrained bacterial promiscuity: the Tn916-Tn1545 family of conjugative transposons. Trends Microbiol. 1995 Jun;3(6):229–236. doi: 10.1016/s0966-842x(00)88930-1. [DOI] [PubMed] [Google Scholar]
  6. Comstock L. E., Maneval D., Jr, Panigrahi P., Joseph A., Levine M. M., Kaper J. B., Morris J. G., Jr, Johnson J. A. The capsule and O antigen in Vibrio cholerae O139 Bengal are associated with a genetic region not present in Vibrio cholerae O1. Infect Immun. 1995 Jan;63(1):317–323. doi: 10.1128/iai.63.1.317-323.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Coster T. S., Killeen K. P., Waldor M. K., Beattie D. T., Spriggs D. R., Kenner J. R., Trofa A., Sadoff J. C., Mekalanos J. J., Taylor D. N. Safety, immunogenicity, and efficacy of live attenuated Vibrio cholerae O139 vaccine prototype. Lancet. 1995 Apr 15;345(8955):949–952. doi: 10.1016/s0140-6736(95)90698-3. [DOI] [PubMed] [Google Scholar]
  8. Donnenberg M. S., Kaper J. B. Construction of an eae deletion mutant of enteropathogenic Escherichia coli by using a positive-selection suicide vector. Infect Immun. 1991 Dec;59(12):4310–4317. doi: 10.1128/iai.59.12.4310-4317.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ferro-Novick S., Honma M., Beckwith J. The product of gene secC is involved in the synthesis of exported proteins in E. coli. Cell. 1984 Aug;38(1):211–217. doi: 10.1016/0092-8674(84)90542-7. [DOI] [PubMed] [Google Scholar]
  10. Gerbaud G., Dodin A., Goldstein F., Courvalin P. Genetic basis of trimethoprim and O/129 resistance in Vibrio cholerae. Ann Inst Pasteur Microbiol. 1985 Nov-Dec;136B(3):265–273. doi: 10.1016/s0769-2609(85)80072-7. [DOI] [PubMed] [Google Scholar]
  11. Goldberg I., Mekalanos J. J. Effect of a recA mutation on cholera toxin gene amplification and deletion events. J Bacteriol. 1986 Mar;165(3):723–731. doi: 10.1128/jb.165.3.723-731.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Herrington D. A., Hall R. H., Losonsky G., Mekalanos J. J., Taylor R. K., Levine M. M. Toxin, toxin-coregulated pili, and the toxR regulon are essential for Vibrio cholerae pathogenesis in humans. J Exp Med. 1988 Oct 1;168(4):1487–1492. doi: 10.1084/jem.168.4.1487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Iredell J. R., Manning P. A. Biotype-specific tcpA genes in Vibrio cholerae. FEMS Microbiol Lett. 1994 Aug 1;121(1):47–54. doi: 10.1111/j.1574-6968.1994.tb07074.x. [DOI] [PubMed] [Google Scholar]
  14. Jesudason M. V., John T. J. Transferable trimethoprim resistance of Vibrio cholerae O1 encountered in southern India. Trans R Soc Trop Med Hyg. 1990 Jan-Feb;84(1):136–137. doi: 10.1016/0035-9203(90)90407-6. [DOI] [PubMed] [Google Scholar]
  15. Karaolis D. K., Lan R., Reeves P. R. The sixth and seventh cholera pandemics are due to independent clones separately derived from environmental, nontoxigenic, non-O1 Vibrio cholerae. J Bacteriol. 1995 Jun;177(11):3191–3198. doi: 10.1128/jb.177.11.3191-3198.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Matsushita S., Kudoh Y., Ohashi M. Transferable resistance to the vibriostatic agent 2,4-diamino-6,7-diisopropyl-pteridine (O/129) in Vibrio cholerae. Microbiol Immunol. 1984;28(10):1159–1162. doi: 10.1111/j.1348-0421.1984.tb00773.x. [DOI] [PubMed] [Google Scholar]
  17. Mekalanos J. J. Live bacterial vaccines: environmental aspects. Curr Opin Biotechnol. 1994 Jun;5(3):312–319. doi: 10.1016/0958-1669(94)90035-3. [DOI] [PubMed] [Google Scholar]
  18. Mekalanos J. J., Sadoff J. C. Cholera vaccines: fighting an ancient scourge. Science. 1994 Sep 2;265(5177):1387–1389. doi: 10.1126/science.8073279. [DOI] [PubMed] [Google Scholar]
  19. Mekalanos J. J., Swartz D. J., Pearson G. D., Harford N., Groyne F., de Wilde M. Cholera toxin genes: nucleotide sequence, deletion analysis and vaccine development. Nature. 1983 Dec 8;306(5943):551–557. doi: 10.1038/306551a0. [DOI] [PubMed] [Google Scholar]
  20. Miller V. L., Mekalanos J. J. A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR. J Bacteriol. 1988 Jun;170(6):2575–2583. doi: 10.1128/jb.170.6.2575-2583.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nair G. B., Bag P. K., Shimada T., Ramamurthy T., Takeda T., Yamamoto S., Kurazono H., Takeda Y. Evaluation of DNA probes for specific detection of Vibrio cholerae O139 Bengal. J Clin Microbiol. 1995 Aug;33(8):2186–2187. doi: 10.1128/jcm.33.8.2186-2187.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Nair G. B., Ramamurthy T., Bhattacharya S. K., Mukhopadhyay A. K., Garg S., Bhattacharya M. K., Takeda T., Shimada T., Takeda Y., Deb B. C. Spread of Vibrio cholerae O139 Bengal in India. J Infect Dis. 1994 May;169(5):1029–1034. doi: 10.1093/infdis/169.5.1029. [DOI] [PubMed] [Google Scholar]
  23. Nair G. B., Shimada T., Kurazono H., Okuda J., Pal A., Karasawa T., Mihara T., Uesaka Y., Shirai H., Garg S. Characterization of phenotypic, serological, and toxigenic traits of Vibrio cholerae O139 bengal. J Clin Microbiol. 1994 Nov;32(11):2775–2779. doi: 10.1128/jcm.32.11.2775-2779.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Popovic T., Fields P. I., Olsvik O., Wells J. G., Evins G. M., Cameron D. N., Farmer J. J., 3rd, Bopp C. A., Wachsmuth K., Sack R. B. Molecular subtyping of toxigenic Vibrio cholerae O139 causing epidemic cholera in India and Bangladesh, 1992-1993. J Infect Dis. 1995 Jan;171(1):122–127. doi: 10.1093/infdis/171.1.122. [DOI] [PubMed] [Google Scholar]
  25. Ramamurthy T., Garg S., Sharma R., Bhattacharya S. K., Nair G. B., Shimada T., Takeda T., Karasawa T., Kurazano H., Pal A. Emergence of novel strain of Vibrio cholerae with epidemic potential in southern and eastern India. Lancet. 1993 Mar 13;341(8846):703–704. doi: 10.1016/0140-6736(93)90480-5. [DOI] [PubMed] [Google Scholar]
  26. Ramamurthy T., Pal A., Pal S. C., Nair G. B. Taxonomical implications of the emergence of high frequency of occurrence of 2,4-diamino-6,7-diisopropylpteridine-resistant strains of Vibrio cholerae from clinical cases of cholera in Calcutta, India. J Clin Microbiol. 1992 Mar;30(3):742–743. doi: 10.1128/jcm.30.3.742-743.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Rhine J. A., Taylor R. K. TcpA pilin sequences and colonization requirements for O1 and O139 vibrio cholerae. Mol Microbiol. 1994 Sep;13(6):1013–1020. doi: 10.1111/j.1365-2958.1994.tb00492.x. [DOI] [PubMed] [Google Scholar]
  28. Salyers A. A., Shoemaker N. B., Li L. Y. In the driver's seat: the Bacteroides conjugative transposons and the elements they mobilize. J Bacteriol. 1995 Oct;177(20):5727–5731. doi: 10.1128/jb.177.20.5727-5731.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Tacket C. O., Losonsky G., Nataro J. P., Comstock L., Michalski J., Edelman R., Kaper J. B., Levine M. M. Initial clinical studies of CVD 112 Vibrio cholerae O139 live oral vaccine: safety and efficacy against experimental challenge. J Infect Dis. 1995 Sep;172(3):883–886. doi: 10.1093/infdis/172.3.883. [DOI] [PubMed] [Google Scholar]
  30. Tschäpe H., Tietze E., Koch C. Characterization of conjugative R plasmids belonging to the new incompatibility group IncU. J Gen Microbiol. 1981 Nov;127(1):155–160. doi: 10.1099/00221287-127-1-155. [DOI] [PubMed] [Google Scholar]
  31. Waldor M. K., Colwell R., Mekalanos J. J. The Vibrio cholerae O139 serogroup antigen includes an O-antigen capsule and lipopolysaccharide virulence determinants. Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11388–11392. doi: 10.1073/pnas.91.24.11388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Waldor M. K., Mekalanos J. J. Emergence of a new cholera pandemic: molecular analysis of virulence determinants in Vibrio cholerae O139 and development of a live vaccine prototype. J Infect Dis. 1994 Aug;170(2):278–283. doi: 10.1093/infdis/170.2.278. [DOI] [PubMed] [Google Scholar]
  33. Waldor M. K., Mekalanos J. J. ToxR regulates virulence gene expression in non-O1 strains of Vibrio cholerae that cause epidemic cholera. Infect Immun. 1994 Jan;62(1):72–78. doi: 10.1128/iai.62.1.72-78.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Waldor M. K., Mekalanos J. J. Vibrio cholerae O139 specific gene sequences. Lancet. 1994 May 28;343(8909):1366–1366. doi: 10.1016/s0140-6736(94)92504-6. [DOI] [PubMed] [Google Scholar]
  35. Yam W. C., Yuen K. Y., Wong S. S., Que T. L. Vibrio cholerae O139 susceptible to vibriostatic agent 0/129 and co-trimoxazole. Lancet. 1994 Aug 6;344(8919):404–405. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES