Skip to main content
Mediators of Inflammation logoLink to Mediators of Inflammation
. 1999;8(1):7–11. doi: 10.1080/09629359990658

Inflammation and CFTR: might neutrophils be the key in cystic fibrosis?

V Witko-Sarsat 1, I Sermet-Gaudelus 1, G Lenoir 1, B Descamps-Latscha 1
PMCID: PMC1781783  PMID: 10704083

Abstract

The aim of this hypothesis is to provide new insights into the still unclear mechanisms governing airway inflammation in cystic fibrosis. Although the genetic basis of cystic fibrosis as well as the molecular structure of cystic fibrosis transmembrane regulator (CFTR), the mutated protein which causes the disease, have been well defined, a clear relationship between the genetic defect and the pulmonary pathophysiology, especially chronic infections and neutrophil-dominated airway inflammation has not been established. Cystic fibrosis is thus a unique pathological situation in that neutrophils can be depicted as both an antiinfectious and a proinflammatory cell. In cystic fibrosis there is an emerging picture of an imbalance between these two roles with both a reduction in the antiinfectious efficacy and an augmentation of the proinflammatory functions. Better knowledge of fundamental defects in neutrophil function in cystic fibrosis as well as a novel cellular function of CFTR, which will be reviewed, will allow identification of potentially new clinical targets and aid selective therapeutic action aimed at counteracting the lethal neutrophil-induced airway inflammation. The rationale for colchicine therapy is a significant example of a drug which might act both at the molecular levels on CFTR expression in epithelial cells and on neutrophils to mediate antiinflammatory effects. Preliminary results are presented in this issue (Med Inflamm 1999; 8: 13-15).

Full Text

The Full Text of this article is available as a PDF (126.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baltimore R. S., Mitchell M. Immunologic investigations of mucoid strains of Pseudomonas aeruginosa: comparison of susceptibility to opsonic antibody in mucoid and nonmucoid strains. J Infect Dis. 1980 Feb;141(2):238–247. doi: 10.1093/infdis/141.2.238. [DOI] [PubMed] [Google Scholar]
  2. Barasch J., Kiss B., Prince A., Saiman L., Gruenert D., al-Awqati Q. Defective acidification of intracellular organelles in cystic fibrosis. Nature. 1991 Jul 4;352(6330):70–73. doi: 10.1038/352070a0. [DOI] [PubMed] [Google Scholar]
  3. Birrer P., McElvaney N. G., Rüdeberg A., Sommer C. W., Liechti-Gallati S., Kraemer R., Hubbard R., Crystal R. G. Protease-antiprotease imbalance in the lungs of children with cystic fibrosis. Am J Respir Crit Care Med. 1994 Jul;150(1):207–213. doi: 10.1164/ajrccm.150.1.7912987. [DOI] [PubMed] [Google Scholar]
  4. Bonfield T. L., Panuska J. R., Konstan M. W., Hilliard K. A., Hilliard J. B., Ghnaim H., Berger M. Inflammatory cytokines in cystic fibrosis lungs. Am J Respir Crit Care Med. 1995 Dec;152(6 Pt 1):2111–2118. doi: 10.1164/ajrccm.152.6.8520783. [DOI] [PubMed] [Google Scholar]
  5. Cantin A. Cystic fibrosis lung inflammation: early, sustained, and severe. Am J Respir Crit Care Med. 1995 Apr;151(4):939–941. doi: 10.1164/ajrccm.151.4.7697269. [DOI] [PubMed] [Google Scholar]
  6. Davis P. B., Vargo K. Pulmonary abnormalities in obligate heterozygotes for cystic fibrosis. Thorax. 1987 Feb;42(2):120–125. doi: 10.1136/thx.42.2.120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fiel S. B. Clinical management of pulmonary disease in cystic fibrosis. Lancet. 1993 Apr 24;341(8852):1070–1074. doi: 10.1016/0140-6736(93)92423-q. [DOI] [PubMed] [Google Scholar]
  8. Friend P. A. Pulmonary infection in cystic fibrosis. J Infect. 1986 Jul;13(1):55–72. doi: 10.1016/s0163-4453(86)92325-x. [DOI] [PubMed] [Google Scholar]
  9. Gabriel S. E., Brigman K. N., Koller B. H., Boucher R. C., Stutts M. J. Cystic fibrosis heterozygote resistance to cholera toxin in the cystic fibrosis mouse model. Science. 1994 Oct 7;266(5182):107–109. doi: 10.1126/science.7524148. [DOI] [PubMed] [Google Scholar]
  10. Goldman M. J., Anderson G. M., Stolzenberg E. D., Kari U. P., Zasloff M., Wilson J. M. Human beta-defensin-1 is a salt-sensitive antibiotic in lung that is inactivated in cystic fibrosis. Cell. 1997 Feb 21;88(4):553–560. doi: 10.1016/s0092-8674(00)81895-4. [DOI] [PubMed] [Google Scholar]
  11. Goldstein W., Döring G. Lysosomal enzymes from polymorphonuclear leukocytes and proteinase inhibitors in patients with cystic fibrosis. Am Rev Respir Dis. 1986 Jul;134(1):49–56. doi: 10.1164/arrd.1986.134.1.49. [DOI] [PubMed] [Google Scholar]
  12. Grinstein S., Furuya W., Biggar W. D. Cytoplasmic pH regulation in normal and abnormal neutrophils. Role of superoxide generation and Na+/H+ exchange. J Biol Chem. 1986 Jan 15;261(2):512–514. [PubMed] [Google Scholar]
  13. Hansson G. C. Cystic fibrosis and chloride-secreting diarrhoea. Nature. 1988 Jun 23;333(6175):711–711. doi: 10.1038/333711c0. [DOI] [PubMed] [Google Scholar]
  14. Hoof T., Demmer A., Hadam M. R., Riordan J. R., Tümmler B. Cystic fibrosis-type mutational analysis in the ATP-binding cassette transporter signature of human P-glycoprotein MDR1. J Biol Chem. 1994 Aug 12;269(32):20575–20583. [PubMed] [Google Scholar]
  15. Kelley T. J., Drumm M. L. Inducible nitric oxide synthase expression is reduced in cystic fibrosis murine and human airway epithelial cells. J Clin Invest. 1998 Sep 15;102(6):1200–1207. doi: 10.1172/JCI2357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Khan T. Z., Wagener J. S., Bost T., Martinez J., Accurso F. J., Riches D. W. Early pulmonary inflammation in infants with cystic fibrosis. Am J Respir Crit Care Med. 1995 Apr;151(4):1075–1082. doi: 10.1164/ajrccm/151.4.1075. [DOI] [PubMed] [Google Scholar]
  17. Knowles M. R., Church N. L., Waltner W. E., Yankaskas J. R., Gilligan P., King M., Edwards L. J., Helms R. W., Boucher R. C. A pilot study of aerosolized amiloride for the treatment of lung disease in cystic fibrosis. N Engl J Med. 1990 Apr 26;322(17):1189–1194. doi: 10.1056/NEJM199004263221704. [DOI] [PubMed] [Google Scholar]
  18. Konstan M. W., Byard P. J., Hoppel C. L., Davis P. B. Effect of high-dose ibuprofen in patients with cystic fibrosis. N Engl J Med. 1995 Mar 30;332(13):848–854. doi: 10.1056/NEJM199503303321303. [DOI] [PubMed] [Google Scholar]
  19. Lallemand J. Y., Stoven V., Annereau J. P., Boucher J., Blanquet S., Barthe J., Lenoir G. Induction by antitumoral drugs of proteins that functionally complement CFTR: a novel therapy for cystic fibrosis? Lancet. 1997 Sep 6;350(9079):711–712. doi: 10.1016/s0140-6736(05)63510-6. [DOI] [PubMed] [Google Scholar]
  20. Lehrer R. I., Ganz T. Antimicrobial polypeptides of human neutrophils. Blood. 1990 Dec 1;76(11):2169–2181. [PubMed] [Google Scholar]
  21. Linsdell P., Hanrahan J. W. Glutathione permeability of CFTR. Am J Physiol. 1998 Jul;275(1 Pt 1):C323–C326. doi: 10.1152/ajpcell.1998.275.1.C323. [DOI] [PubMed] [Google Scholar]
  22. McElvaney N. G., Hubbard R. C., Birrer P., Chernick M. S., Caplan D. B., Frank M. M., Crystal R. G. Aerosol alpha 1-antitrypsin treatment for cystic fibrosis. Lancet. 1991 Feb 16;337(8738):392–394. doi: 10.1016/0140-6736(91)91167-s. [DOI] [PubMed] [Google Scholar]
  23. McElvaney N. G., Nakamura H., Birrer P., Hébert C. A., Wong W. L., Alphonso M., Baker J. B., Catalano M. A., Crystal R. G. Modulation of airway inflammation in cystic fibrosis. In vivo suppression of interleukin-8 levels on the respiratory epithelial surface by aerosolization of recombinant secretory leukoprotease inhibitor. J Clin Invest. 1992 Oct;90(4):1296–1301. doi: 10.1172/JCI115994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Pier G. B., Grout M., Zaidi T. S. Cystic fibrosis transmembrane conductance regulator is an epithelial cell receptor for clearance of Pseudomonas aeruginosa from the lung. Proc Natl Acad Sci U S A. 1997 Oct 28;94(22):12088–12093. doi: 10.1073/pnas.94.22.12088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Prince A. The CFTR advantage--capitalizing on a quirk of fate. Nat Med. 1998 Jun;4(6):663–664. doi: 10.1038/nm0698-663. [DOI] [PubMed] [Google Scholar]
  26. Regelmann W. E., Siefferman C. M., Herron J. M., Elliott G. R., Clawson C. C., Gray B. H. Sputum peroxidase activity correlates with the severity of lung disease in cystic fibrosis. Pediatr Pulmonol. 1995 Jan;19(1):1–9. doi: 10.1002/ppul.1950190102. [DOI] [PubMed] [Google Scholar]
  27. Riordan J. R., Rommens J. M., Kerem B., Alon N., Rozmahel R., Grzelczak Z., Zielenski J., Lok S., Plavsic N., Chou J. L. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science. 1989 Sep 8;245(4922):1066–1073. doi: 10.1126/science.2475911. [DOI] [PubMed] [Google Scholar]
  28. Rosengren S., Henson P. M., Worthen G. S. Migration-associated volume changes in neutrophils facilitate the migratory process in vitro. Am J Physiol. 1994 Dec;267(6 Pt 1):C1623–C1632. doi: 10.1152/ajpcell.1994.267.6.C1623. [DOI] [PubMed] [Google Scholar]
  29. Russell K. J., McRedmond J., Mukherji N., Costello C., Keatings V., Linnane S., Henry M., Fitzgerald M. X., O'Connor C. M. Neutrophil adhesion molecule surface expression and responsiveness in cystic fibrosis. Am J Respir Crit Care Med. 1998 Mar;157(3 Pt 1):756–761. doi: 10.1164/ajrccm.157.3.9704008. [DOI] [PubMed] [Google Scholar]
  30. Sato K., Sato F. Variable reduction in beta-adrenergic sweat secretion in cystic fibrosis heterozygotes. J Lab Clin Med. 1988 May;111(5):511–518. [PubMed] [Google Scholar]
  31. Sermet-Gaudelus I., Stoven V., Annereau J. P., Witko-Sarsat V., Reinert P., Guyot M., Descamps-Latscha B., Lallemand J. Y., Lenoir G. Interest of colchicine for the treatment of cystic fibrosis patients. Preliminary report. Mediators Inflamm. 1999;8(1):13–15. doi: 10.1080/09629359990667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Stern R. C. The diagnosis of cystic fibrosis. N Engl J Med. 1997 Feb 13;336(7):487–491. doi: 10.1056/NEJM199702133360707. [DOI] [PubMed] [Google Scholar]
  33. Stockley R. A. The role of proteinases in the pathogenesis of chronic bronchitis. Am J Respir Crit Care Med. 1994 Dec;150(6 Pt 2):S109–S113. doi: 10.1164/ajrccm/150.6_Pt_2.S109. [DOI] [PubMed] [Google Scholar]
  34. Suter S., Schaad U. B., Roux L., Nydegger U. E., Waldvogel F. A. Granulocyte neutral proteases and Pseudomonas elastase as possible causes of airway damage in patients with cystic fibrosis. J Infect Dis. 1984 Apr;149(4):523–531. doi: 10.1093/infdis/149.4.523. [DOI] [PubMed] [Google Scholar]
  35. Wei L. Y., Hoffman M. M., Roepe P. D. Altered pHi regulation in 3T3/CFTR clones and their chemotherapeutic drug-selected derivatives. Am J Physiol. 1997 May;272(5 Pt 1):C1642–C1653. doi: 10.1152/ajpcell.1997.272.5.C1642. [DOI] [PubMed] [Google Scholar]
  36. Welsh M. J., Smith A. E. Molecular mechanisms of CFTR chloride channel dysfunction in cystic fibrosis. Cell. 1993 Jul 2;73(7):1251–1254. doi: 10.1016/0092-8674(93)90353-r. [DOI] [PubMed] [Google Scholar]
  37. Witko-Sarsat V., Allen R. C., Paulais M., Nguyen A. T., Bessou G., Lenoir G., Descamps-Latscha B. Disturbed myeloperoxidase-dependent activity of neutrophils in cystic fibrosis homozygotes and heterozygotes, and its correction by amiloride. J Immunol. 1996 Sep 15;157(6):2728–2735. [PubMed] [Google Scholar]
  38. Witko-Sarsat V., Delacourt C., Rabier D., Bardet J., Nguyen A. T., Descamps-Latscha B. Neutrophil-derived long-lived oxidants in cystic fibrosis sputum. Am J Respir Crit Care Med. 1995 Dec;152(6 Pt 1):1910–1916. doi: 10.1164/ajrccm.152.6.8520754. [DOI] [PubMed] [Google Scholar]
  39. Witko-Sarsat V., Halbwachs-Mecarelli L., Sermet-Gaudelus I., Bessou G., Lenoir G., Allen R. C., Descamps-Latscha B. Priming of blood neutrophils in children with cystic fibrosis: correlation between functional and phenotypic expression of opsonin receptors before and after platelet-activating factor priming. J Infect Dis. 1999 Jan;179(1):151–162. doi: 10.1086/314532. [DOI] [PubMed] [Google Scholar]
  40. Yoshimura K., Nakamura H., Trapnell B. C., Chu C. S., Dalemans W., Pavirani A., Lecocq J. P., Crystal R. G. Expression of the cystic fibrosis transmembrane conductance regulator gene in cells of non-epithelial origin. Nucleic Acids Res. 1991 Oct 11;19(19):5417–5423. doi: 10.1093/nar/19.19.5417. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Mediators of Inflammation are provided here courtesy of Wiley

RESOURCES