Skip to main content
Mediators of Inflammation logoLink to Mediators of Inflammation
. 1998;7(2):99–103. doi: 10.1080/09629359891243

Effect of platelet-activating factor on the growth of human erythroid and myeloid CD34+ progenitors.

F Dupuis 1, N Gachard 1, A Allegraud 1, C Dulery 1, V Praloran 1, Y Denizot 1
PMCID: PMC1781832  PMID: 9836496

Abstract

We have assessed the effect of platelet-activating factor (PAF), a biologically active phospholipid present in the human marrow, on the growth of human marrow and blood CD34+ progenitors. While the metabolization rate of PAF by CD34+ cells is low (weak acetylhydrolase and acylation processes) it is readily catabolized by the acetylhydrolase activity present in the growth medium (10% fetal calf serum + 10% 5637-conditioned medium). Treatment of marrow CD34+ cells with the non-metabolizable PAF agonist C-PAF (1 nM to 100 nM) immediately before semi-solid culture significantly (P < 0.01) decreased the number of BFU-E but not of CFU-GM colonies. Treatment of marrow or blood CD34+ cells with C-PAF (10-100 nM) for 3 days in liquid medium before semi-solid culture significantly (P < 0.01) decreased the number of BFU-E and CFU-GM colonies. Treatment of blood CD34+ cells with the two PAF receptor antagonists CV 3988 and BN 52021 (1 microM) had no significant effect on the number of BFU-E and CFU-GM colonies suggesting no role of endogenous PAF in these processes. These results show that exogenous PAF downregulates human erythropoiesis and myelopoiesis, a result that might be of importance during inflammatory states.

Full Text

The Full Text of this article is available as a PDF (154.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrews R. G., Singer J. W., Bernstein I. D. Monoclonal antibody 12-8 recognizes a 115-kd molecule present on both unipotent and multipotent hematopoietic colony-forming cells and their precursors. Blood. 1986 Mar;67(3):842–845. [PubMed] [Google Scholar]
  2. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  3. Bellone G., Astarita P., Artusio E., Silvestri S., Mareschi K., Turletti A., Buttiglieri S., Emanuelli G., Matera L. Bone marrow stroma-derived prolactin is involved in basal and platelet-activating factor-stimulated in vitro erythropoiesis. Blood. 1997 Jul 1;90(1):21–27. [PubMed] [Google Scholar]
  4. Bender J. G., Unverzagt K. L., Walker D. E., Lee W., Van Epps D. E., Smith D. H., Stewart C. C., To L. B. Identification and comparison of CD34-positive cells and their subpopulations from normal peripheral blood and bone marrow using multicolor flow cytometry. Blood. 1991 Jun 15;77(12):2591–2596. [PubMed] [Google Scholar]
  5. Bonavida B., Mencia-Huerta J. M. Platelet-activating factor and the cytokine network in inflammatory processes. Clin Rev Allergy. 1994 Winter;12(4):381–395. doi: 10.1007/BF02802301. [DOI] [PubMed] [Google Scholar]
  6. Claesson H. E., Dahlberg N., Gahrton G. Stimulation of human myelopoiesis by leukotriene B4. Biochem Biophys Res Commun. 1985 Sep 16;131(2):579–585. doi: 10.1016/0006-291x(85)91276-8. [DOI] [PubMed] [Google Scholar]
  7. Denizot Y., Charissoux J. L., Nathan N., Praloran V. PAF and haematopoiesis: V. Platelet-activating factor and acetylhydrolase in human femoral bone marrow. J Lipid Mediat Cell Signal. 1995 Jul;12(1):45–47. doi: 10.1016/0929-7855(95)00006-c. [DOI] [PubMed] [Google Scholar]
  8. Denizot Y., Dupuis F., Trimoreau F., Verger C., Allegraud A., Praloran V. PAF and haematopoiesis: IX. Platelet-activating factor increases DNA synthesis in human bone marrow cells. J Lipid Mediat Cell Signal. 1996 Dec;15(1):1–4. doi: 10.1016/s0929-7855(96)00447-6. [DOI] [PubMed] [Google Scholar]
  9. Denizot Y., Trimoreau F., Dupuis F., Verger C., Praloran V. PAF and haematopoiesis: III. Presence and metabolism of platelet-activating factor in human bone marrow. Biochim Biophys Acta. 1995 Feb 16;1265(1):55–60. doi: 10.1016/0167-4889(94)00193-i. [DOI] [PubMed] [Google Scholar]
  10. Holyoake T. L., Alcorn M. J. CD34+ positive haemopoietic cells: biology and clinical applications. Blood Rev. 1994 Jun;8(2):113–124. doi: 10.1016/s0268-960x(05)80016-5. [DOI] [PubMed] [Google Scholar]
  11. Krause D. S., Fackler M. J., Civin C. I., May W. S. CD34: structure, biology, and clinical utility. Blood. 1996 Jan 1;87(1):1–13. [PubMed] [Google Scholar]
  12. Leca G., Joly F., Vazquez A., Galanaud P., Ninio E. Paf-acether-induced superoxide anion generation in human B cell line. FEBS Lett. 1990 Aug 20;269(1):171–173. doi: 10.1016/0014-5793(90)81146-f. [DOI] [PubMed] [Google Scholar]
  13. Lu L., Broxmeyer H. E. Comparative influences of phytohemagglutinin-stimulated leukocyte conditioned medium, hemin, prostaglandin E, and low oxygen tension on colony formation by erythroid progenitor cells in normal human bone marrow. Exp Hematol. 1985 Nov;13(10):989–993. [PubMed] [Google Scholar]
  14. Miller A. M., Weiner R. S., Ziboh V. A. Evidence for the role of leukotrienes C4 and D4 as essential intermediates in CSF-stimulated human myeloid colony formation. Exp Hematol. 1986 Sep;14(8):760–765. [PubMed] [Google Scholar]
  15. Miwa M., Miyake T., Yamanaka T., Sugatani J., Suzuki Y., Sakata S., Araki Y., Matsumoto M. Characterization of serum platelet-activating factor (PAF) acetylhydrolase. Correlation between deficiency of serum PAF acetylhydrolase and respiratory symptoms in asthmatic children. J Clin Invest. 1988 Dec;82(6):1983–1991. doi: 10.1172/JCI113818. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Pasquale D., Chikkappa G. Lipoxygenase products regulate proliferation of granulocyte-macrophage progenitors. Exp Hematol. 1993 Sep;21(10):1361–1365. [PubMed] [Google Scholar]
  17. Rola-Pleszczynski M., Thivierge M., Gagnon N., Lacasse C., Stankova J. Differential regulation of cytokine and cytokine receptor genes by PAF, LTB4 and PGE2. J Lipid Mediat. 1993 Mar-Apr;6(1-3):175–181. [PubMed] [Google Scholar]
  18. Rossi G. B., Migliaccio A. R., Migliaccio G., Lettieri F., Di Rosa M., Peschle C., Mastroberardino G. In vitro interactions of PGE and cAMP with murine and human erythroid precursors. Blood. 1980 Jul;56(1):74–79. [PubMed] [Google Scholar]
  19. Saito H., Hayakawa T., Mita H., Akiyama K., Shida T. PAF-induced eosinophilic and basophilic differentiation in human hematopoietic precursor cells. J Lipid Mediat. 1992 Jun-Jul;5(2):135–137. [PubMed] [Google Scholar]
  20. Servida F., Soligo D., Caneva L., Bertolini F., de Harven E., Campiglio S., Corsini C., Deliliers G. L. Functional and morphological characterization of immunomagnetically selected CD34+ hematopoietic progenitor cells. Stem Cells. 1996 Jul;14(4):430–438. doi: 10.1002/stem.140430. [DOI] [PubMed] [Google Scholar]
  21. Simmons P. J., Torok-Storb B. CD34 expression by stromal precursors in normal human adult bone marrow. Blood. 1991 Dec 1;78(11):2848–2853. [PubMed] [Google Scholar]
  22. Stenke L., Mansour M., Reizenstein P., Lindgren J. A. Stimulation of human myelopoiesis by leukotrienes B4 and C4: interactions with granulocyte-macrophage colony-stimulating factor. Blood. 1993 Jan 15;81(2):352–356. [PubMed] [Google Scholar]
  23. Wickenhauser C., Thiele J., Drebber U., Kvasnicka H. M., Thiel A., Schmitz B., Hansmann M. L., Fischer R. CD34+ human hemopoietic progenitor cells of the bone marrow differ from those of the peripheral blood: an immunocytochemical and morphometric study. Acta Haematol. 1995;93(2-4):83–90. doi: 10.1159/000204117. [DOI] [PubMed] [Google Scholar]
  24. de Wynter E. A., Coutinho L. H., Pei X., Marsh J. C., Hows J., Luft T., Testa N. G. Comparison of purity and enrichment of CD34+ cells from bone marrow, umbilical cord and peripheral blood (primed for apheresis) using five separation systems. Stem Cells. 1995 Sep;13(5):524–532. doi: 10.1002/stem.5530130510. [DOI] [PubMed] [Google Scholar]

Articles from Mediators of Inflammation are provided here courtesy of Wiley

RESOURCES