Skip to main content
Mediators of Inflammation logoLink to Mediators of Inflammation
. 1998;7(3):201–210. doi: 10.1080/09629359891144

BN 52021 (a platelet activating factor-receptor antagonist) decreases alveolar macrophage-mediated lung injury in experimental extrinsic allergic alveolitis.

J L Pérez-Arellano 1, T Martín 1, J M López-Novoa 1, M L Sánchez 1, A Montero 1, A Jiménez 1
PMCID: PMC1781835  PMID: 9705608

Abstract

Several lines of research indirectly suggest that platelet activating factor (PAF) may intervene in the pathogenesis of extrinsic allergic alveolitis (EAA). The specific aim of our study was to evaluate the participation of PAF on macrophage activation during the acute phase of EAA in an experimental model of this disease developed in guinea pigs. Initially we measured the concentration of PAF in bronchoalvedar lavage fluid, blood and lung tissue. In a second phase we evaluate the participation of PAF on alveolar macrophage activation and parenchymal lung injury. The effect of PAF on parenchymal lung injury was evaluated by measuring several lung parenchymatous lesion indices (lung index, bronchoalvedar lavage fluid (BALF) lactic hydrogenase activity and BALF alkaline phosphatase activity) and parameters of systemic response to the challenge (acute phase reagents). We observed that induction of the experimental EAA gave rise to an increase in the concentration of PAF in blood and in lung tissue. The use of the PAF-receptor antagonist BN52021 decreases the release of lysosomal enzymes (beta-glucuronidase and tartrate-sensitive acid phosphatase) to the extracellular environment both in vivo and in vitro. Furthermore, antagonism of the PAF receptors notably decreases pulmonary parenchymatous lesion. These data suggest that lung lesions from acute EAA are partly mediated by local production of PAF.

Full Text

The Full Text of this article is available as a PDF (237.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams D. O., Hamilton T. A. The cell biology of macrophage activation. Annu Rev Immunol. 1984;2:283–318. doi: 10.1146/annurev.iy.02.040184.001435. [DOI] [PubMed] [Google Scholar]
  2. Albert D. H., Snyder F. Release of arachidonic acid from 1-alkyl-2-acyl-sn-glycero-3-phosphocholine, a precursor of platelet-activating factor, in rat alveolar macrophages. Biochim Biophys Acta. 1984 Oct 24;796(1):92–101. doi: 10.1016/0005-2760(84)90242-x. [DOI] [PubMed] [Google Scholar]
  3. Arnoux B., Joseph M., Simoes M. H., Tonnel A. B., Duroux P., Capron A., Benveniste J. Antigenic release of paf-acether and beta-glucuronidase from alveolar macrophages of asthmatics. Bull Eur Physiopathol Respir. 1987 Mar-Apr;23(2):119–124. [PubMed] [Google Scholar]
  4. Calvanico N. J., Ambegaonkar S. P., Schlueter D. P., Fink J. N. Immunoglobulin levels in bronchoalveolar lavage fluid from pigeon breeders. J Lab Clin Med. 1980 Jul;96(1):129–140. [PubMed] [Google Scholar]
  5. Camussi G., Pawlowski I., Tetta C., Roffinello C., Alberton M., Brentjens J., Andres G. Acute lung inflammation induced in the rabbit by local instillation of 1-0-octadecyl-2-acetyl-sn-glyceryl-3-phosphorylcholine or of native platelet-activating factor. Am J Pathol. 1983 Jul;112(1):78–88. [PMC free article] [PubMed] [Google Scholar]
  6. Caramelo C., Fernández-Gallardo S., Marín-Cao D., Iñarrea P., Santos J. C., López-Novoa J. M., Sanchez Crespo M. Presence of platelet-activating factor in blood from humans and experimental animals. Its absence in anephric individuals. Biochem Biophys Res Commun. 1984 May 16;120(3):789–796. doi: 10.1016/s0006-291x(84)80176-x. [DOI] [PubMed] [Google Scholar]
  7. Chang S. W., Feddersen C. O., Henson P. M., Voelkel N. F. Platelet-activating factor mediates hemodynamic changes and lung injury in endotoxin-treated rats. J Clin Invest. 1987 May;79(5):1498–1509. doi: 10.1172/JCI112980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cormier Y., Gagnon L., Bérubé-Genest F., Fournier M. Sequential bronchoalveolar lavage in experimental extrinsic allergic alveolitis. The influence of cigarette smoking. Am Rev Respir Dis. 1988 May;137(5):1104–1109. doi: 10.1164/ajrccm/137.5.1104. [DOI] [PubMed] [Google Scholar]
  9. Costabel U. The alveolitis of hypersensitivity pneumonitis. Eur Respir J. 1988 Jan;1(1):5–9. [PubMed] [Google Scholar]
  10. Edelson J. D., Shannon J. M., Mason R. J. Alkaline phosphatase: a marker of alveolar type II cell differentiation. Am Rev Respir Dis. 1988 Nov;138(5):1268–1275. doi: 10.1164/ajrccm/138.5.1268. [DOI] [PubMed] [Google Scholar]
  11. Elstad M. R., Stafforini D. M., McIntyre T. M., Prescott S. M., Zimmerman G. A. Platelet-activating factor acetylhydrolase increases during macrophage differentiation. A novel mechanism that regulates accumulation of platelet-activating factor. J Biol Chem. 1989 May 25;264(15):8467–8470. [PubMed] [Google Scholar]
  12. Forkert P. G., Custer E. M., Alpert A. J., Ansari G. A., Reynolds E. S. Lactate dehydrogenase activity in mouse lung following 1,1-dichloroethylene: index of airway injury. Exp Lung Res. 1982 Dec;4(1):67–77. doi: 10.3109/01902148209039250. [DOI] [PubMed] [Google Scholar]
  13. Haroldsen P. E., Voelkel N. F., Henson J. E., Henson P. M., Murphy R. C. Metabolism of platelet-activating factor in isolated perfused rat lung. J Clin Invest. 1987 Jun;79(6):1860–1867. doi: 10.1172/JCI113028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Henderson R. F., Mauderly J. L., Pickrell J. A., Hahn F. F., Muhle H., Rebar A. H. Comparative study of bronchoalveolar lavage fluid: effect of species, age, and method of lavage. Exp Lung Res. 1987;13(3):329–342. doi: 10.3109/01902148709069597. [DOI] [PubMed] [Google Scholar]
  15. Hillmann G. Fortlaufende photometrische Messung der sauren Prostataphosphatase-Aktivität. Z Klin Chem Klin Biochem. 1971 May;9(3):273–274. [PubMed] [Google Scholar]
  16. Hoffman R. M., Rogers R. M. Serum and lavage lactate dehydrogenase isoenzymes in pulmonary alveolar proteinosis. Am Rev Respir Dis. 1991 Jan;143(1):42–46. doi: 10.1164/ajrccm/143.1.42. [DOI] [PubMed] [Google Scholar]
  17. Jenkinson S. G., Black R. D., Lawrence R. A. Glutathione concentrations in rat lung bronchoalveolar lavage fluid: effects of hyperoxia. J Lab Clin Med. 1988 Sep;112(3):345–351. [PubMed] [Google Scholar]
  18. Kadiri C., Cherqui G., Masliah J., Rybkine T., Etienne J., Béréziat G. Mechanism of N-formyl-methionyl-leucyl-phenylalanine- and platelet-activating factor-induced arachidonic acid release in guinea pig alveolar macrophages: involvement of a GTP-binding protein and role of protein kinase A and protein kinase C. Mol Pharmacol. 1990 Sep;38(3):418–425. [PubMed] [Google Scholar]
  19. Kawai T., Salvaggio J., Lake W., Harris J. O. Experimental production of hypersensitivity pneumonitis with bagasse and thermophilic actinomycete antigen. J Allergy Clin Immunol. 1972 Nov;50(5):276–288. doi: 10.1016/0091-6749(72)90026-7. [DOI] [PubMed] [Google Scholar]
  20. McGee M. P., Myrvik Q. N. Phagocytosis-induced injury of normal and activated alveolar macrophages. Infect Immun. 1979 Dec;26(3):910–915. doi: 10.1128/iai.26.3.910-915.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Pérez Arellano J. L., Sánchez Sánchez R., Pastor Encinas I., Losa García J. E., García Martín M. J., González Villarón L. Pathogenesis of hypersensitivity pneumonitis. Allergol Immunopathol (Madr) 1989 Sep-Oct;17(5):225–232. [PubMed] [Google Scholar]
  22. Pérez-Arellano J. L., Barrios M. N., Martín T., Sánchez M. L., Jiménez A., González-Buitrago J. M. Hydrolytic enzyme of the alveolar macrophage in diffuse pulmonary interstitial disease. Respir Med. 1996 Mar;90(3):159–166. doi: 10.1016/s0954-6111(96)90158-4. [DOI] [PubMed] [Google Scholar]
  23. Quezada A. L., Gimpel S. F., Miranda D. O., Las Heras J. B., Andreis M. C. Ultrastructural features of alveolar cells in experimental hypersensitivity pneumonitis. Respiration. 1987;51(2):127–136. doi: 10.1159/000195179. [DOI] [PubMed] [Google Scholar]
  24. Reasor M. J., Nadeau D., Hook G. E. Extracellular alkaline phosphatase in the airways of the rabbit lung. Lung. 1978;155(4):321–325. doi: 10.1007/BF02730706. [DOI] [PubMed] [Google Scholar]
  25. Roberts R. C., Moore V. L. Immunopathogenesis of hypersensitivity pneumonitis. Am Rev Respir Dis. 1977 Dec;116(6):1075–1090. doi: 10.1164/arrd.1977.116.6.1075. [DOI] [PubMed] [Google Scholar]
  26. Roodman G. D., Ibbotson K. J., MacDonald B. R., Kuehl T. J., Mundy G. R. 1,25-Dihydroxyvitamin D3 causes formation of multinucleated cells with several osteoclast characteristics in cultures of primate marrow. Proc Natl Acad Sci U S A. 1985 Dec;82(23):8213–8217. doi: 10.1073/pnas.82.23.8213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Salvaggio J., Phanuphak P., Stanford R., Bice D., Claman H. Experimental production of granulomatous pneumonitis. Comparison of immunological and morphological sequelae with particulate and soluble antigens administered via the respiratory route. J Allergy Clin Immunol. 1975 Nov;56(5):364–380. doi: 10.1016/0091-6749(75)90130-x. [DOI] [PubMed] [Google Scholar]
  28. Schaberg T., Haller H., Lode H. Evidence for a platelet-activating factor receptor on human alveolar macrophages. Biochem Biophys Res Commun. 1991 Jun 14;177(2):704–710. doi: 10.1016/0006-291x(91)91845-4. [DOI] [PubMed] [Google Scholar]
  29. Schuyler M., Crooks L. Experimental hypersensitivity pneumonitis in guinea pigs. Kinetics and dose response. Am Rev Respir Dis. 1989 Apr;139(4):996–1002. doi: 10.1164/ajrccm/139.4.996. [DOI] [PubMed] [Google Scholar]
  30. Schuyler M., Subramanyan S., Hassan M. O. Experimental hypersensitivity pneumonitis: transfer with cultured cells. J Lab Clin Med. 1987 Jun;109(6):623–630. [PubMed] [Google Scholar]
  31. Seppä A., Jägerroos H., Mäntyjärvi R. A. Experimental allergic alveolitis in mice induced by Thermoactinomyces vulgaris. Acta Pathol Microbiol Immunol Scand A. 1984 Mar;92(2):125–131. doi: 10.1111/j.1699-0463.1984.tb04386.x. [DOI] [PubMed] [Google Scholar]
  32. Shen T. Y., Hwang S. B., Chang M. N., Doebber T. W., Lam M. H., Wu M. S., Wang X., Han G. Q., Li R. Z. Characterization of a platelet-activating factor receptor antagonist isolated from haifenteng (Piper futokadsura): specific inhibition of in vitro and in vivo platelet-activating factor-induced effects. Proc Natl Acad Sci U S A. 1985 Feb;82(3):672–676. doi: 10.1073/pnas.82.3.672. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Smith R. L., Ripps C. S., Lewis M. L. Elevated lactate dehydrogenase values in patients with Pneumocystis carinii pneumonia. Chest. 1988 May;93(5):987–992. doi: 10.1378/chest.93.5.987. [DOI] [PubMed] [Google Scholar]
  34. Speziale S. C., Smith R. J. Effects of soluble stimuli on human monocyte secretion. Clin Immunol Immunopathol. 1985 Jul;36(1):60–69. doi: 10.1016/0090-1229(85)90039-x. [DOI] [PubMed] [Google Scholar]
  35. Takizawa H., Suko M., Kobayashi N., Shoji S., Ohta K., Nogami M., Okudaira H., Miyamoto T., Shiga J. Experimental hypersensitivity pneumonitis in the mouse: histologic and immunologic features and their modulation with cyclosporin A. J Allergy Clin Immunol. 1988 Feb;81(2):391–400. doi: 10.1016/0091-6749(88)90907-4. [DOI] [PubMed] [Google Scholar]
  36. Warren J. S., Barton P. A., Mandel D. M., Matrosic K. Intrapulmonary tumor necrosis factor triggers local platelet-activating factor production in rat immune complex alveolitis. Lab Invest. 1990 Dec;63(6):746–754. [PubMed] [Google Scholar]
  37. Watanabe N., Kamei S., Ohkubo A., Yamanaka M., Ohsawa S., Makino K., Tokuda K. Urinary protein as measured with a pyrogallol red-molybdate complex, manually and in a Hitachi 726 automated analyzer. Clin Chem. 1986 Aug;32(8):1551–1554. [PubMed] [Google Scholar]
  38. Wilson B. D., Sternick J. L., Yoshizawa Y., Katzenstein A. L., Moore V. L. Experimental murine hypersensitivity pneumonitis: multigenic control and influence by genes within the I-B subregion of the H-2 complex. J Immunol. 1982 Nov;129(5):2160–2163. [PubMed] [Google Scholar]

Articles from Mediators of Inflammation are provided here courtesy of Wiley

RESOURCES