Skip to main content
Mediators of Inflammation logoLink to Mediators of Inflammation
. 1998;7(4):239–255. doi: 10.1080/09629359890929

Production, regulation and role of nitric oxide in glial cells.

V A Vincent 1, F J Tilders 1, A M Van Dam 1
PMCID: PMC1781853  PMID: 9792334

Full Text

The Full Text of this article is available as a PDF (622.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Achim C. L., Heyes M. P., Wiley C. A. Quantitation of human immunodeficiency virus, immune activation factors, and quinolinic acid in AIDS brains. J Clin Invest. 1993 Jun;91(6):2769–2775. doi: 10.1172/JCI116518. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Adamson D. C., Wildemann B., Sasaki M., Glass J. D., McArthur J. C., Christov V. I., Dawson T. M., Dawson V. L. Immunologic NO synthase: elevation in severe AIDS dementia and induction by HIV-1 gp41. Science. 1996 Dec 13;274(5294):1917–1921. doi: 10.1126/science.274.5294.1917. [DOI] [PubMed] [Google Scholar]
  3. Akaneya Y., Takahashi M., Hatanaka H. Interleukin-1 beta enhances survival and interleukin-6 protects against MPP+ neurotoxicity in cultures of fetal rat dopaminergic neurons. Exp Neurol. 1995 Nov;136(1):44–52. doi: 10.1006/exnr.1995.1082. [DOI] [PubMed] [Google Scholar]
  4. Akenami F. O., Koskiniemi M., Färkkilä M., Vaheri A. Cerebrospinal fluid plasminogen activator inhibitor-1 in patients with neurological disease. J Clin Pathol. 1997 Feb;50(2):157–160. doi: 10.1136/jcp.50.2.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Akenami F. O., Sirén V., Koskiniemi M., Siimes M. A., Teräväinen H., Vaheri A. Cerebrospinal fluid activity of tissue plasminogen activator in patients with neurological diseases. J Clin Pathol. 1996 Jul;49(7):577–580. doi: 10.1136/jcp.49.7.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Akimoto J., Itoh H., Miwa T., Ikeda K. Immunohistochemical study of glutamine synthetase expression in early glial development. Brain Res Dev Brain Res. 1993 Mar 19;72(1):9–14. doi: 10.1016/0165-3806(93)90154-3. [DOI] [PubMed] [Google Scholar]
  7. Alliot F., Lecain E., Grima B., Pessac B. Microglial progenitors with a high proliferative potential in the embryonic and adult mouse brain. Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1541–1545. doi: 10.1073/pnas.88.4.1541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Aloisi F., Borsellino G., Samoggia P., Testa U., Chelucci C., Russo G., Peschle C., Levi G. Astrocyte cultures from human embryonic brain: characterization and modulation of surface molecules by inflammatory cytokines. J Neurosci Res. 1992 Aug;32(4):494–506. doi: 10.1002/jnr.490320405. [DOI] [PubMed] [Google Scholar]
  9. Araujo D. M., Cotman C. W. Basic FGF in astroglial, microglial, and neuronal cultures: characterization of binding sites and modulation of release by lymphokines and trophic factors. J Neurosci. 1992 May;12(5):1668–1678. doi: 10.1523/JNEUROSCI.12-05-01668.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Assreuy J., Cunha F. Q., Liew F. Y., Moncada S. Feedback inhibition of nitric oxide synthase activity by nitric oxide. Br J Pharmacol. 1993 Mar;108(3):833–837. doi: 10.1111/j.1476-5381.1993.tb12886.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Awatsuji H., Furukawa Y., Hirota M., Murakami Y., Nii S., Furukawa S., Hayashi K. Interleukin-4 and -5 as modulators of nerve growth factor synthesis/secretion in astrocytes. J Neurosci Res. 1993 Apr 1;34(5):539–545. doi: 10.1002/jnr.490340506. [DOI] [PubMed] [Google Scholar]
  12. Bagasra O., Michaels F. H., Zheng Y. M., Bobroski L. E., Spitsin S. V., Fu Z. F., Tawadros R., Koprowski H. Activation of the inducible form of nitric oxide synthase in the brains of patients with multiple sclerosis. Proc Natl Acad Sci U S A. 1995 Dec 19;92(26):12041–12045. doi: 10.1073/pnas.92.26.12041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Banati R. B., Gehrmann J., Schubert P., Kreutzberg G. W. Cytotoxicity of microglia. Glia. 1993 Jan;7(1):111–118. doi: 10.1002/glia.440070117. [DOI] [PubMed] [Google Scholar]
  14. Banati R. B., Graeber M. B. Surveillance, intervention and cytotoxicity: is there a protective role of microglia? Dev Neurosci. 1994;16(3-4):114–127. doi: 10.1159/000112098. [DOI] [PubMed] [Google Scholar]
  15. Banati R. B., Rothe G., Valet G., Kreutzberg G. W. Detection of lysosomal cysteine proteinases in microglia: flow cytometric measurement and histochemical localization of cathepsin B and L. Glia. 1993 Feb;7(2):183–191. doi: 10.1002/glia.440070208. [DOI] [PubMed] [Google Scholar]
  16. Bandtlow C. E., Meyer M., Lindholm D., Spranger M., Heumann R., Thoenen H. Regional and cellular codistribution of interleukin 1 beta and nerve growth factor mRNA in the adult rat brain: possible relationship to the regulation of nerve growth factor synthesis. J Cell Biol. 1990 Oct;111(4):1701–1711. doi: 10.1083/jcb.111.4.1701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Banker G. A. Trophic interactions between astroglial cells and hippocampal neurons in culture. Science. 1980 Aug 15;209(4458):809–810. doi: 10.1126/science.7403847. [DOI] [PubMed] [Google Scholar]
  18. Beck J., Rondot P., Catinot L., Falcoff E., Kirchner H., Wietzerbin J. Increased production of interferon gamma and tumor necrosis factor precedes clinical manifestation in multiple sclerosis: do cytokines trigger off exacerbations? Acta Neurol Scand. 1988 Oct;78(4):318–323. doi: 10.1111/j.1600-0404.1988.tb03663.x. [DOI] [PubMed] [Google Scholar]
  19. Beckman J. S., Beckman T. W., Chen J., Marshall P. A., Freeman B. A. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci U S A. 1990 Feb;87(4):1620–1624. doi: 10.1073/pnas.87.4.1620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Behzadian M. A., Wang X. L., Jiang B., Caldwell R. B. Angiostatic role of astrocytes: suppression of vascular endothelial cell growth by TGF-beta and other inhibitory factor(s). Glia. 1995 Dec;15(4):480–490. doi: 10.1002/glia.440150411. [DOI] [PubMed] [Google Scholar]
  21. Benyó Z., Szabó C., Stuiver B. T., Bohus B., Sándor P. Hypothalamic blood flow remains unaltered following chronic nitric oxide synthase blockade in rats. Neurosci Lett. 1995 Sep 29;198(2):127–130. doi: 10.1016/0304-3940(95)11981-2. [DOI] [PubMed] [Google Scholar]
  22. Berdeaux A. Nitric oxide: an ubiquitous messenger. Fundam Clin Pharmacol. 1993;7(8):401–411. doi: 10.1111/j.1472-8206.1993.tb01037.x. [DOI] [PubMed] [Google Scholar]
  23. Berkenbosch F. Macrophages and astroglial interactions in repair to brain injury. Ann N Y Acad Sci. 1992 Apr 15;650:186–190. doi: 10.1111/j.1749-6632.1992.tb49119.x. [DOI] [PubMed] [Google Scholar]
  24. Bertini G., Savio T., Zaccheo D., Schmidt H. H., Bentivoglio M. NADPH-diaphorase activity in brain macrophages during postnatal development in the rat. Neuroscience. 1996 Jan;70(1):287–293. doi: 10.1016/0306-4522(95)00366-q. [DOI] [PubMed] [Google Scholar]
  25. Boje K. M., Arora P. K. Microglial-produced nitric oxide and reactive nitrogen oxides mediate neuronal cell death. Brain Res. 1992 Aug 7;587(2):250–256. doi: 10.1016/0006-8993(92)91004-x. [DOI] [PubMed] [Google Scholar]
  26. Bolaños J. P., Heales S. J., Land J. M., Clark J. B. Effect of peroxynitrite on the mitochondrial respiratory chain: differential susceptibility of neurones and astrocytes in primary culture. J Neurochem. 1995 May;64(5):1965–1972. doi: 10.1046/j.1471-4159.1995.64051965.x. [DOI] [PubMed] [Google Scholar]
  27. Bolaños J. P., Peuchen S., Heales S. J., Land J. M., Clark J. B. Nitric oxide-mediated inhibition of the mitochondrial respiratory chain in cultured astrocytes. J Neurochem. 1994 Sep;63(3):910–916. doi: 10.1046/j.1471-4159.1994.63030910.x. [DOI] [PubMed] [Google Scholar]
  28. Bonfoco E., Krainc D., Ankarcrona M., Nicotera P., Lipton S. A. Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-D-aspartate or nitric oxide/superoxide in cortical cell cultures. Proc Natl Acad Sci U S A. 1995 Aug 1;92(16):7162–7166. doi: 10.1073/pnas.92.16.7162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Bowenkamp K. E., Hoffman A. F., Gerhardt G. A., Henry M. A., Biddle P. T., Hoffer B. J., Granholm A. C. Glial cell line-derived neurotrophic factor supports survival of injured midbrain dopaminergic neurons. J Comp Neurol. 1995 May 15;355(4):479–489. doi: 10.1002/cne.903550402. [DOI] [PubMed] [Google Scholar]
  30. Boya J., Calvo J. L., Carbonell A. L., Borregon A. A lectin histochemistry study on the development of rat microglial cells. J Anat. 1991 Apr;175:229–236. [PMC free article] [PubMed] [Google Scholar]
  31. Bredt D. S., Glatt C. E., Hwang P. M., Fotuhi M., Dawson T. M., Snyder S. H. Nitric oxide synthase protein and mRNA are discretely localized in neuronal populations of the mammalian CNS together with NADPH diaphorase. Neuron. 1991 Oct;7(4):615–624. doi: 10.1016/0896-6273(91)90374-9. [DOI] [PubMed] [Google Scholar]
  32. Bredt D. S., Snyder S. H. Nitric oxide, a novel neuronal messenger. Neuron. 1992 Jan;8(1):3–11. doi: 10.1016/0896-6273(92)90104-l. [DOI] [PubMed] [Google Scholar]
  33. Brenneman D. E., Schultzberg M., Bartfai T., Gozes I. Cytokine regulation of neuronal survival. J Neurochem. 1992 Feb;58(2):454–460. doi: 10.1111/j.1471-4159.1992.tb09743.x. [DOI] [PubMed] [Google Scholar]
  34. Brenner T., Yamin A., Abramsky O., Gallily R. Stimulation of tumor necrosis factor-alpha production by mycoplasmas and inhibition by dexamethasone in cultured astrocytes. Brain Res. 1993 Apr 16;608(2):273–279. doi: 10.1016/0006-8993(93)91468-8. [DOI] [PubMed] [Google Scholar]
  35. Bronstein D. M., Perez-Otano I., Sun V., Mullis Sawin S. B., Chan J., Wu G. C., Hudson P. M., Kong L. Y., Hong J. S., McMillian M. K. Glia-dependent neurotoxicity and neuroprotection in mesencephalic cultures. Brain Res. 1995 Dec 15;704(1):112–116. doi: 10.1016/0006-8993(95)01189-7. [DOI] [PubMed] [Google Scholar]
  36. Brosnan C. F., Battistini L., Raine C. S., Dickson D. W., Casadevall A., Lee S. C. Reactive nitrogen intermediates in human neuropathology: an overview. Dev Neurosci. 1994;16(3-4):152–161. doi: 10.1159/000112102. [DOI] [PubMed] [Google Scholar]
  37. Budka H., Costanzi G., Cristina S., Lechi A., Parravicini C., Trabattoni R., Vago L. Brain pathology induced by infection with the human immunodeficiency virus (HIV). A histological, immunocytochemical, and electron microscopical study of 100 autopsy cases. Acta Neuropathol. 1987;75(2):185–198. doi: 10.1007/BF00687080. [DOI] [PubMed] [Google Scholar]
  38. Bukrinsky M. I., Nottet H. S., Schmidtmayerova H., Dubrovsky L., Flanagan C. R., Mullins M. E., Lipton S. A., Gendelman H. E. Regulation of nitric oxide synthase activity in human immunodeficiency virus type 1 (HIV-1)-infected monocytes: implications for HIV-associated neurological disease. J Exp Med. 1995 Feb 1;181(2):735–745. doi: 10.1084/jem.181.2.735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Butz E. A., Hostager B. S., Southern P. J. Macrophages in mice acutely infected with lymphocytic choriomeningitis virus are primed for nitric oxide synthesis. Microb Pathog. 1994 Apr;16(4):283–295. doi: 10.1006/mpat.1994.1029. [DOI] [PubMed] [Google Scholar]
  40. Bö L., Dawson T. M., Wesselingh S., Mörk S., Choi S., Kong P. A., Hanley D., Trapp B. D. Induction of nitric oxide synthase in demyelinating regions of multiple sclerosis brains. Ann Neurol. 1994 Nov;36(5):778–786. doi: 10.1002/ana.410360515. [DOI] [PubMed] [Google Scholar]
  41. Bö L., Mörk S., Kong P. A., Nyland H., Pardo C. A., Trapp B. D. Detection of MHC class II-antigens on macrophages and microglia, but not on astrocytes and endothelia in active multiple sclerosis lesions. J Neuroimmunol. 1994 May;51(2):135–146. doi: 10.1016/0165-5728(94)90075-2. [DOI] [PubMed] [Google Scholar]
  42. Caldani M., Rolland B., Fages C., Tardy M. Glutamine synthetase activity during mouse brain development. Experientia. 1982 Oct 15;38(10):1199–1202. doi: 10.1007/BF01959739. [DOI] [PubMed] [Google Scholar]
  43. Calvo C. F., Yoshimura T., Gelman M., Mallat M. Production of monocyte chemotactic protein-1 by rat brain macrophages. Eur J Neurosci. 1996 Aug;8(8):1725–1734. doi: 10.1111/j.1460-9568.1996.tb01316.x. [DOI] [PubMed] [Google Scholar]
  44. Cameron R. S., Rakic P. Glial cell lineage in the cerebral cortex: a review and synthesis. Glia. 1991;4(2):124–137. doi: 10.1002/glia.440040204. [DOI] [PubMed] [Google Scholar]
  45. Campbell I. L., Samimi A., Chiang C. S. Expression of the inducible nitric oxide synthase. Correlation with neuropathology and clinical features in mice with lymphocytic choriomeningitis. J Immunol. 1994 Oct 15;153(8):3622–3629. [PubMed] [Google Scholar]
  46. Chamak B., Dobbertin A., Mallat M. Immunohistochemical detection of thrombospondin in microglia in the developing rat brain. Neuroscience. 1995 Nov;69(1):177–187. doi: 10.1016/0306-4522(95)00236-c. [DOI] [PubMed] [Google Scholar]
  47. Chamak B., Morandi V., Mallat M. Brain macrophages stimulate neurite growth and regeneration by secreting thrombospondin. J Neurosci Res. 1994 Jun 1;38(2):221–233. doi: 10.1002/jnr.490380213. [DOI] [PubMed] [Google Scholar]
  48. Chao C. C., Hu S., Close K., Choi C. S., Molitor T. W., Novick W. J., Peterson P. K. Cytokine release from microglia: differential inhibition by pentoxifylline and dexamethasone. J Infect Dis. 1992 Oct;166(4):847–853. doi: 10.1093/infdis/166.4.847. [DOI] [PubMed] [Google Scholar]
  49. Chao C. C., Hu S., Molitor T. W., Shaskan E. G., Peterson P. K. Activated microglia mediate neuronal cell injury via a nitric oxide mechanism. J Immunol. 1992 Oct 15;149(8):2736–2741. [PubMed] [Google Scholar]
  50. Chao C. C., Hu S., Sheng W. S., Bu D., Bukrinsky M. I., Peterson P. K. Cytokine-stimulated astrocytes damage human neurons via a nitric oxide mechanism. Glia. 1996 Mar;16(3):276–284. doi: 10.1002/(SICI)1098-1136(199603)16:3<276::AID-GLIA10>3.0.CO;2-X. [DOI] [PubMed] [Google Scholar]
  51. Chao C. C., Hu S., Sheng W. S., Peterson P. K. Tumor necrosis factor-alpha production by human fetal microglial cells: regulation by other cytokines. Dev Neurosci. 1995;17(2):97–105. doi: 10.1159/000111278. [DOI] [PubMed] [Google Scholar]
  52. Chao C. C., Hu S., Sheng W. S., Tsang M., Peterson P. K. Tumor necrosis factor-alpha mediates the release of bioactive transforming growth factor-beta in murine microglial cell cultures. Clin Immunol Immunopathol. 1995 Dec;77(3):358–365. doi: 10.1006/clin.1995.1163. [DOI] [PubMed] [Google Scholar]
  53. Chao C. C., Hu S. Tumor necrosis factor-alpha potentiates glutamate neurotoxicity in human fetal brain cell cultures. Dev Neurosci. 1994;16(3-4):172–179. doi: 10.1159/000112104. [DOI] [PubMed] [Google Scholar]
  54. Chao C. C., Molitor T. W., Hu S. Neuroprotective role of IL-4 against activated microglia. J Immunol. 1993 Aug 1;151(3):1473–1481. [PubMed] [Google Scholar]
  55. Cheifetz S., Hernandez H., Laiho M., ten Dijke P., Iwata K. K., Massagué J. Distinct transforming growth factor-beta (TGF-beta) receptor subsets as determinants of cellular responsiveness to three TGF-beta isoforms. J Biol Chem. 1990 Nov 25;265(33):20533–20538. [PubMed] [Google Scholar]
  56. Choi D. W. Glutamate neurotoxicity and diseases of the nervous system. Neuron. 1988 Oct;1(8):623–634. doi: 10.1016/0896-6273(88)90162-6. [DOI] [PubMed] [Google Scholar]
  57. Colasanti M., Persichini T., Di Pucchio T., Gremo F., Lauro G. M. Human ramified microglial cells produce nitric oxide upon Escherichia coli lipopolysaccharide and tumor necrosis factor alpha stimulation. Neurosci Lett. 1995 Nov 17;200(2):144–146. doi: 10.1016/0304-3940(95)12101-9. [DOI] [PubMed] [Google Scholar]
  58. Colton C. A., Gilbert D. L. Microglia, an in vivo source of reactive oxygen species in the brain. Adv Neurol. 1993;59:321–326. [PubMed] [Google Scholar]
  59. Colton C. A., Gilbert D. L. Production of superoxide anions by a CNS macrophage, the microglia. FEBS Lett. 1987 Nov 2;223(2):284–288. doi: 10.1016/0014-5793(87)80305-8. [DOI] [PubMed] [Google Scholar]
  60. Connop B. P., Boegman R. J., Beninger R. J., Jhamandas K. Attenuation of malonate-induced degeneration of the nigrostriatal pathway by inhibitors of nitric oxide synthase. Neuropharmacology. 1996 Apr;35(4):459–465. doi: 10.1016/0028-3908(95)00194-8. [DOI] [PubMed] [Google Scholar]
  61. Constam D. B., Philipp J., Malipiero U. V., ten Dijke P., Schachner M., Fontana A. Differential expression of transforming growth factor-beta 1, -beta 2, and -beta 3 by glioblastoma cells, astrocytes, and microglia. J Immunol. 1992 Mar 1;148(5):1404–1410. [PubMed] [Google Scholar]
  62. Corradin S. B., Mauël J., Donini S. D., Quattrocchi E., Ricciardi-Castagnoli P. Inducible nitric oxide synthase activity of cloned murine microglial cells. Glia. 1993 Mar;7(3):255–262. doi: 10.1002/glia.440070309. [DOI] [PubMed] [Google Scholar]
  63. Cross A. H., Misko T. P., Lin R. F., Hickey W. F., Trotter J. L., Tilton R. G. Aminoguanidine, an inhibitor of inducible nitric oxide synthase, ameliorates experimental autoimmune encephalomyelitis in SJL mice. J Clin Invest. 1994 Jun;93(6):2684–2690. doi: 10.1172/JCI117282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Cunha F. Q., Moncada S., Liew F. Y. Interleukin-10 (IL-10) inhibits the induction of nitric oxide synthase by interferon-gamma in murine macrophages. Biochem Biophys Res Commun. 1992 Feb 14;182(3):1155–1159. doi: 10.1016/0006-291x(92)91852-h. [DOI] [PubMed] [Google Scholar]
  65. Cuzner M. L., Gveric D., Strand C., Loughlin A. J., Paemen L., Opdenakker G., Newcombe J. The expression of tissue-type plasminogen activator, matrix metalloproteases and endogenous inhibitors in the central nervous system in multiple sclerosis: comparison of stages in lesion evolution. J Neuropathol Exp Neurol. 1996 Dec;55(12):1194–1204. doi: 10.1097/00005072-199612000-00002. [DOI] [PubMed] [Google Scholar]
  66. Dawson T. M., Dawson V. L., Snyder S. H. A novel neuronal messenger molecule in brain: the free radical, nitric oxide. Ann Neurol. 1992 Sep;32(3):297–311. doi: 10.1002/ana.410320302. [DOI] [PubMed] [Google Scholar]
  67. Dawson T. M., Dawson V. L., Snyder S. H. Molecular mechanisms of nitric oxide actions in the brain. Ann N Y Acad Sci. 1994 Nov 17;738:76–85. doi: 10.1111/j.1749-6632.1994.tb21792.x. [DOI] [PubMed] [Google Scholar]
  68. Dawson T. M., Zhang J., Dawson V. L., Snyder S. H. Nitric oxide: cellular regulation and neuronal injury. Prog Brain Res. 1994;103:365–369. doi: 10.1016/s0079-6123(08)61150-4. [DOI] [PubMed] [Google Scholar]
  69. Dawson V. L., Brahmbhatt H. P., Mong J. A., Dawson T. M. Expression of inducible nitric oxide synthase causes delayed neurotoxicity in primary mixed neuronal-glial cortical cultures. Neuropharmacology. 1994 Nov;33(11):1425–1430. doi: 10.1016/0028-3908(94)90045-0. [DOI] [PubMed] [Google Scholar]
  70. Dawson V. L., Dawson T. M. Nitric oxide neurotoxicity. J Chem Neuroanat. 1996 Jun;10(3-4):179–190. doi: 10.1016/0891-0618(96)00148-2. [DOI] [PubMed] [Google Scholar]
  71. De Groot C. J., Ruuls S. R., Theeuwes J. W., Dijkstra C. D., Van der Valk P. Immunocytochemical characterization of the expression of inducible and constitutive isoforms of nitric oxide synthase in demyelinating multiple sclerosis lesions. J Neuropathol Exp Neurol. 1997 Jan;56(1):10–20. doi: 10.1097/00005072-199701000-00002. [DOI] [PubMed] [Google Scholar]
  72. Dell'Anna M. E., Geloso M. C., Draisci G., Luthman J. Transient changes in Fos and GFAP immunoreactivity precede neuronal loss in the rat hippocampus following neonatal anoxia. Exp Neurol. 1995 Jan;131(1):144–156. doi: 10.1016/0014-4886(95)90016-0. [DOI] [PubMed] [Google Scholar]
  73. Demerlé-Pallardy C., Lonchampt M. O., Chabrier P. E., Braquet P. Nitric oxide synthase induction in glial cells: effect on neuronal survival. Life Sci. 1993;52(23):1883–1890. doi: 10.1016/0024-3205(93)90009-r. [DOI] [PubMed] [Google Scholar]
  74. Dickson D. W., Lee S. C., Hatch W., Mattiace L. A., Brosnan C. F., Lyman W. D. Macrophages and microglia in HIV-related CNS neuropathology. Res Publ Assoc Res Nerv Ment Dis. 1994;72:99–118. [PubMed] [Google Scholar]
  75. Dickson D. W., Lee S. C., Mattiace L. A., Yen S. H., Brosnan C. Microglia and cytokines in neurological disease, with special reference to AIDS and Alzheimer's disease. Glia. 1993 Jan;7(1):75–83. doi: 10.1002/glia.440070113. [DOI] [PubMed] [Google Scholar]
  76. Dighiero P., Reux I., Hauw J. J., Fillet A. M., Courtois Y., Goureau O. Expression of inducible nitric oxide synthase in cytomegalovirus-infected glial cells of retinas from AIDS patients. Neurosci Lett. 1994 Jan 17;166(1):31–34. doi: 10.1016/0304-3940(94)90833-8. [DOI] [PubMed] [Google Scholar]
  77. Ding A., Nathan C. F., Graycar J., Derynck R., Stuehr D. J., Srimal S. Macrophage deactivating factor and transforming growth factors-beta 1 -beta 2 and -beta 3 inhibit induction of macrophage nitrogen oxide synthesis by IFN-gamma. J Immunol. 1990 Aug 1;145(3):940–944. [PubMed] [Google Scholar]
  78. Dong J. F., Detta A., Bakker M. H., Hitchcock E. R. Direct interaction with target-derived glia enhances survival but not differentiation of human fetal mesencephalic dopaminergic neurons. Neuroscience. 1993 Sep;56(1):53–60. doi: 10.1016/0306-4522(93)90561-s. [DOI] [PubMed] [Google Scholar]
  79. Dorheim M. A., Tracey W. R., Pollock J. S., Grammas P. Nitric oxide synthase activity is elevated in brain microvessels in Alzheimer's disease. Biochem Biophys Res Commun. 1994 Nov 30;205(1):659–665. doi: 10.1006/bbrc.1994.2716. [DOI] [PubMed] [Google Scholar]
  80. Dugan L. L., Bruno V. M., Amagasu S. M., Giffard R. G. Glia modulate the response of murine cortical neurons to excitotoxicity: glia exacerbate AMPA neurotoxicity. J Neurosci. 1995 Jun;15(6):4545–4555. doi: 10.1523/JNEUROSCI.15-06-04545.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Endoh M., Maiese K., Wagner J. Expression of the inducible form of nitric oxide synthase by reactive astrocytes after transient global ischemia. Brain Res. 1994 Jul 18;651(1-2):92–100. doi: 10.1016/0006-8993(94)90683-1. [DOI] [PubMed] [Google Scholar]
  82. Epstein L. G., Gendelman H. E. Human immunodeficiency virus type 1 infection of the nervous system: pathogenetic mechanisms. Ann Neurol. 1993 May;33(5):429–436. doi: 10.1002/ana.410330502. [DOI] [PubMed] [Google Scholar]
  83. Estévez A. G., Radi R., Barbeito L., Shin J. T., Thompson J. A., Beckman J. S. Peroxynitrite-induced cytotoxicity in PC12 cells: evidence for an apoptotic mechanism differentially modulated by neurotrophic factors. J Neurochem. 1995 Oct;65(4):1543–1550. doi: 10.1046/j.1471-4159.1995.65041543.x. [DOI] [PubMed] [Google Scholar]
  84. Faber-Elman A., Miskin R., Schwartz M. Components of the plasminogen activator system in astrocytes are modulated by tumor necrosis factor-alpha and interleukin-1 beta through similar signal transduction pathways. J Neurochem. 1995 Oct;65(4):1524–1535. doi: 10.1046/j.1471-4159.1995.65041524.x. [DOI] [PubMed] [Google Scholar]
  85. Feinstein D. L., Galea E., Reis D. J. Norepinephrine suppresses inducible nitric oxide synthase activity in rat astroglial cultures. J Neurochem. 1993 May;60(5):1945–1948. doi: 10.1111/j.1471-4159.1993.tb13425.x. [DOI] [PubMed] [Google Scholar]
  86. Ferrer I., Bernet E., Soriano E., del Rio T., Fonseca M. Naturally occurring cell death in the cerebral cortex of the rat and removal of dead cells by transitory phagocytes. Neuroscience. 1990;39(2):451–458. doi: 10.1016/0306-4522(90)90281-8. [DOI] [PubMed] [Google Scholar]
  87. Flanders K. C., Lippa C. F., Smith T. W., Pollen D. A., Sporn M. B. Altered expression of transforming growth factor-beta in Alzheimer's disease. Neurology. 1995 Aug;45(8):1561–1569. doi: 10.1212/wnl.45.8.1561. [DOI] [PubMed] [Google Scholar]
  88. Fontana A., Fierz W., Wekerle H. Astrocytes present myelin basic protein to encephalitogenic T-cell lines. Nature. 1984 Jan 19;307(5948):273–276. doi: 10.1038/307273a0. [DOI] [PubMed] [Google Scholar]
  89. Fontana A., Grob P. J. Astrocyte-derived interleukin-1-like factors. Lymphokine Res. 1984;3(1):11–16. [PubMed] [Google Scholar]
  90. Fontana A., Kristensen F., Dubs R., Gemsa D., Weber E. Production of prostaglandin E and an interleukin-1 like factor by cultured astrocytes and C6 glioma cells. J Immunol. 1982 Dec;129(6):2413–2419. [PubMed] [Google Scholar]
  91. Fontana A., McAdam K. P., Kristensen F., Weber E. Biological and biochemical characterization of an interleukin 1-like factor from rat C6 glioma cells. Eur J Immunol. 1983 Aug;13(8):685–689. doi: 10.1002/eji.1830130814. [DOI] [PubMed] [Google Scholar]
  92. Frei K., Bodmer S., Schwerdel C., Fontana A. Astrocyte-derived interleukin 3 as a growth factor for microglia cells and peritoneal macrophages. J Immunol. 1986 Dec 1;137(11):3521–3527. [PubMed] [Google Scholar]
  93. Frei K., Bodmer S., Schwerdel C., Fontana A. Astrocytes of the brain synthesize interleukin 3-like factors. J Immunol. 1985 Dec;135(6):4044–4047. [PubMed] [Google Scholar]
  94. Frei K., Lins H., Schwerdel C., Fontana A. Antigen presentation in the central nervous system. The inhibitory effect of IL-10 on MHC class II expression and production of cytokines depends on the inducing signals and the type of cell analyzed. J Immunol. 1994 Mar 15;152(6):2720–2728. [PubMed] [Google Scholar]
  95. Frei K., Siepl C., Groscurth P., Bodmer S., Fontana A. Immunobiology of microglial cells. Ann N Y Acad Sci. 1988;540:218–227. doi: 10.1111/j.1749-6632.1988.tb27064.x. [DOI] [PubMed] [Google Scholar]
  96. Friedman W. J., Lärkfors L., Ayer-LeLievre C., Ebendal T., Olson L., Persson H. Regulation of beta-nerve growth factor expression by inflammatory mediators in hippocampal cultures. J Neurosci Res. 1990 Nov;27(3):374–382. doi: 10.1002/jnr.490270316. [DOI] [PubMed] [Google Scholar]
  97. Fujita S., Tsuchihashi Y., Kitamura T. Origin, morphology and function of the microglia. Prog Clin Biol Res. 1981;59A:141–169. [PubMed] [Google Scholar]
  98. Furchgott R. F., Zawadzki J. V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980 Nov 27;288(5789):373–376. doi: 10.1038/288373a0. [DOI] [PubMed] [Google Scholar]
  99. Förstermann U., Schmidt H. H., Pollock J. S., Sheng H., Mitchell J. A., Warner T. D., Nakane M., Murad F. Isoforms of nitric oxide synthase. Characterization and purification from different cell types. Biochem Pharmacol. 1991 Oct 24;42(10):1849–1857. doi: 10.1016/0006-2952(91)90581-o. [DOI] [PubMed] [Google Scholar]
  100. Gadient R. A., Cron K. C., Otten U. Interleukin-1 beta and tumor necrosis factor-alpha synergistically stimulate nerve growth factor (NGF) release from cultured rat astrocytes. Neurosci Lett. 1990 Sep 18;117(3):335–340. doi: 10.1016/0304-3940(90)90687-5. [DOI] [PubMed] [Google Scholar]
  101. Galea E., Feinstein D. L., Reis D. J. Induction of calcium-independent nitric oxide synthase activity in primary rat glial cultures. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10945–10949. doi: 10.1073/pnas.89.22.10945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  102. Galea E., Reis D. J., Fox E. S., Xu H., Feinstein D. L. CD14 mediate endotoxin induction of nitric oxide synthase in cultured brain glial cells. J Neuroimmunol. 1996 Jan;64(1):19–28. doi: 10.1016/0165-5728(95)00143-3. [DOI] [PubMed] [Google Scholar]
  103. Garcia-Abreu J., Moura Neto V., Carvalho S. L., Cavalcante L. A. Regionally specific properties of midbrain glia: I. Interactions with midbrain neurons. J Neurosci Res. 1995 Mar 1;40(4):471–477. doi: 10.1002/jnr.490400406. [DOI] [PubMed] [Google Scholar]
  104. Gazzinelli R. T., Eltoum I., Wynn T. A., Sher A. Acute cerebral toxoplasmosis is induced by in vivo neutralization of TNF-alpha and correlates with the down-regulated expression of inducible nitric oxide synthase and other markers of macrophage activation. J Immunol. 1993 Oct 1;151(7):3672–3681. [PubMed] [Google Scholar]
  105. Gebicke-Haerter P. J., Bauer J., Schobert A., Northoff H. Lipopolysaccharide-free conditions in primary astrocyte cultures allow growth and isolation of microglial cells. J Neurosci. 1989 Jan;9(1):183–194. doi: 10.1523/JNEUROSCI.09-01-00183.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  106. Gelbard H. A., Nottet H. S., Swindells S., Jett M., Dzenko K. A., Genis P., White R., Wang L., Choi Y. B., Zhang D. Platelet-activating factor: a candidate human immunodeficiency virus type 1-induced neurotoxin. J Virol. 1994 Jul;68(7):4628–4635. doi: 10.1128/jvi.68.7.4628-4635.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  107. Genis P., Jett M., Bernton E. W., Boyle T., Gelbard H. A., Dzenko K., Keane R. W., Resnick L., Mizrachi Y., Volsky D. J. Cytokines and arachidonic metabolites produced during human immunodeficiency virus (HIV)-infected macrophage-astroglia interactions: implications for the neuropathogenesis of HIV disease. J Exp Med. 1992 Dec 1;176(6):1703–1718. doi: 10.1084/jem.176.6.1703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  108. Gilbert R. S., Herschman H. R. Transforming growth factor beta differentially modulates the inducible nitric oxide synthase gene in distinct cell types. Biochem Biophys Res Commun. 1993 Aug 31;195(1):380–384. doi: 10.1006/bbrc.1993.2054. [DOI] [PubMed] [Google Scholar]
  109. Giulian D., Baker T. J. Characterization of ameboid microglia isolated from developing mammalian brain. J Neurosci. 1986 Aug;6(8):2163–2178. doi: 10.1523/JNEUROSCI.06-08-02163.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  110. Giulian D., Baker T. J. Peptides released by ameboid microglia regulate astroglial proliferation. J Cell Biol. 1985 Dec;101(6):2411–2415. doi: 10.1083/jcb.101.6.2411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  111. Giulian D., Baker T. J., Shih L. C., Lachman L. B. Interleukin 1 of the central nervous system is produced by ameboid microglia. J Exp Med. 1986 Aug 1;164(2):594–604. doi: 10.1084/jem.164.2.594. [DOI] [PMC free article] [PubMed] [Google Scholar]
  112. Giulian D., Chen J., Ingeman J. E., George J. K., Noponen M. The role of mononuclear phagocytes in wound healing after traumatic injury to adult mammalian brain. J Neurosci. 1989 Dec;9(12):4416–4429. doi: 10.1523/JNEUROSCI.09-12-04416.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  113. Giulian D., Corpuz M. Microglial secretion products and their impact on the nervous system. Adv Neurol. 1993;59:315–320. [PubMed] [Google Scholar]
  114. Giulian D., Corpuz M., Richmond B., Wendt E., Hall E. R. Activated microglia are the principal glial source of thromboxane in the central nervous system. Neurochem Int. 1996 Jul;29(1):65–76. doi: 10.1016/0197-0186(95)00140-9. [DOI] [PubMed] [Google Scholar]
  115. Giulian D., Ingeman J. E. Colony-stimulating factors as promoters of ameboid microglia. J Neurosci. 1988 Dec;8(12):4707–4717. doi: 10.1523/JNEUROSCI.08-12-04707.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  116. Giulian D., Johnson B., Krebs J. F., George J. K., Tapscott M. Microglial mitogens are produced in the developing and injured mammalian brain. J Cell Biol. 1991 Jan;112(2):323–333. doi: 10.1083/jcb.112.2.323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  117. Giulian D., Lachman L. B. Interleukin-1 stimulation of astroglial proliferation after brain injury. Science. 1985 Apr 26;228(4698):497–499. doi: 10.1126/science.3872478. [DOI] [PubMed] [Google Scholar]
  118. Giulian D., Li J., Li X., George J., Rutecki P. A. The impact of microglia-derived cytokines upon gliosis in the CNS. Dev Neurosci. 1994;16(3-4):128–136. doi: 10.1159/000112099. [DOI] [PubMed] [Google Scholar]
  119. Giulian D. Reactive glia as rivals in regulating neuronal survival. Glia. 1993 Jan;7(1):102–110. doi: 10.1002/glia.440070116. [DOI] [PubMed] [Google Scholar]
  120. Giulian D., Tapscott M. J. Immunoregulation of cells within the central nervous system. Brain Behav Immun. 1988 Dec;2(4):352–358. doi: 10.1016/0889-1591(88)90040-2. [DOI] [PubMed] [Google Scholar]
  121. Giulian D., Vaca K., Johnson B. Secreted peptides as regulators of neuron-glia and glia-glia interactions in the developing nervous system. J Neurosci Res. 1988 Oct-Dec;21(2-4):487–500. doi: 10.1002/jnr.490210240. [DOI] [PubMed] [Google Scholar]
  122. Giulian D., Vaca K., Noonan C. A. Secretion of neurotoxins by mononuclear phagocytes infected with HIV-1. Science. 1990 Dec 14;250(4987):1593–1596. doi: 10.1126/science.2148832. [DOI] [PubMed] [Google Scholar]
  123. Giulian D., Woodward J., Young D. G., Krebs J. F., Lachman L. B. Interleukin-1 injected into mammalian brain stimulates astrogliosis and neovascularization. J Neurosci. 1988 Jul;8(7):2485–2490. doi: 10.1523/JNEUROSCI.08-07-02485.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  124. Giulian D., Young D. G., Woodward J., Brown D. C., Lachman L. B. Interleukin-1 is an astroglial growth factor in the developing brain. J Neurosci. 1988 Feb;8(2):709–714. doi: 10.1523/JNEUROSCI.08-02-00709.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  125. Giulian D., Yu J., Li X., Tom D., Li J., Wendt E., Lin S. N., Schwarcz R., Noonan C. Study of receptor-mediated neurotoxins released by HIV-1-infected mononuclear phagocytes found in human brain. J Neurosci. 1996 May 15;16(10):3139–3153. doi: 10.1523/JNEUROSCI.16-10-03139.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  126. Glenn J. A., Jordan F. L., Thomas W. E. Further studies on the identification of microglia in mixed brain cell cultures. Brain Res Bull. 1989 Jun;22(6):1049–1052. doi: 10.1016/0361-9230(89)90018-x. [DOI] [PubMed] [Google Scholar]
  127. Goldman J. E., Vaysse P. J. Tracing glial cell lineages in the mammalian forebrain. Glia. 1991;4(2):149–156. doi: 10.1002/glia.440040206. [DOI] [PubMed] [Google Scholar]
  128. Gonzalez D., Dees W. L., Hiney J. K., Ojeda S. R., Saneto R. P. Expression of beta-nerve growth factor in cultured cells derived from the hypothalamus and cerebral cortex. Brain Res. 1990 Mar 19;511(2):249–258. doi: 10.1016/0006-8993(90)90169-c. [DOI] [PubMed] [Google Scholar]
  129. Goodwin J. L., Uemura E., Cunnick J. E. Microglial release of nitric oxide by the synergistic action of beta-amyloid and IFN-gamma. Brain Res. 1995 Sep 18;692(1-2):207–214. doi: 10.1016/0006-8993(95)00646-8. [DOI] [PubMed] [Google Scholar]
  130. Goureau O., Lepoivre M., Courtois Y. Lipopolysaccharide and cytokines induce a macrophage-type of nitric oxide synthase in bovine retinal pigmented epithelial cells. Biochem Biophys Res Commun. 1992 Jul 31;186(2):854–859. doi: 10.1016/0006-291x(92)90824-5. [DOI] [PubMed] [Google Scholar]
  131. Gower D. B. Modifiers of steroid-hormone metabolism: a review of their chemistry, biochemistry and clinical applications. J Steroid Biochem. 1974 Aug;5(5):501–523. doi: 10.1016/0022-4731(74)90051-x. [DOI] [PubMed] [Google Scholar]
  132. Graeber M. B., Tetzlaff W., Streit W. J., Kreutzberg G. W. Microglial cells but not astrocytes undergo mitosis following rat facial nerve axotomy. Neurosci Lett. 1988 Mar 10;85(3):317–321. doi: 10.1016/0304-3940(88)90585-x. [DOI] [PubMed] [Google Scholar]
  133. Granat N. E., Malinkovskii N. N. Operatsiia abdominal'nogo kesareva (kesarskogo) seceheniia. Akush Ginekol (Mosk) 1993;(2):56–60. [PubMed] [Google Scholar]
  134. Griffin W. S., Stanley L. C., Ling C., White L., MacLeod V., Perrot L. J., White C. L., 3rd, Araoz C. Brain interleukin 1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer disease. Proc Natl Acad Sci U S A. 1989 Oct;86(19):7611–7615. doi: 10.1073/pnas.86.19.7611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  135. Griffin W. S., Stanley L. C., Ling C., White L., MacLeod V., Perrot L. J., White C. L., 3rd, Araoz C. Brain interleukin 1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer disease. Proc Natl Acad Sci U S A. 1989 Oct;86(19):7611–7615. doi: 10.1073/pnas.86.19.7611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  136. Hama T., Kushima Y., Miyamoto M., Kubota M., Takei N., Hatanaka H. Interleukin-6 improves the survival of mesencephalic catecholaminergic and septal cholinergic neurons from postnatal, two-week-old rats in cultures. Neuroscience. 1991;40(2):445–452. doi: 10.1016/0306-4522(91)90132-8. [DOI] [PubMed] [Google Scholar]
  137. Hassan N. F., Campbell D. E., Rifat S., Douglas S. D. Isolation and characterization of human fetal brain-derived microglia in in vitro culture. Neuroscience. 1991;41(1):149–158. doi: 10.1016/0306-4522(91)90205-3. [DOI] [PubMed] [Google Scholar]
  138. Hawkins R. D. NO honey, I don't remember. Neuron. 1996 Mar;16(3):465–467. doi: 10.1016/s0896-6273(00)80064-1. [DOI] [PubMed] [Google Scholar]
  139. Hertz L. Neuronal-astrocytic interactions in brain development, brain function and brain disease. Adv Exp Med Biol. 1991;296:143–159. doi: 10.1007/978-1-4684-8047-4_15. [DOI] [PubMed] [Google Scholar]
  140. Hetier E., Ayala J., Bousseau A., Prochiantz A. Modulation of interleukin-1 and tumor necrosis factor expression by beta-adrenergic agonists in mouse ameboid microglial cells. Exp Brain Res. 1991;86(2):407–413. doi: 10.1007/BF00228965. [DOI] [PubMed] [Google Scholar]
  141. Hetier E., Ayala J., Denèfle P., Bousseau A., Rouget P., Mallat M., Prochiantz A. Brain macrophages synthesize interleukin-1 and interleukin-1 mRNAs in vitro. J Neurosci Res. 1988 Oct-Dec;21(2-4):391–397. doi: 10.1002/jnr.490210230. [DOI] [PubMed] [Google Scholar]
  142. Hewett S. J., Corbett J. A., McDaniel M. L., Choi D. W. Interferon-gamma and interleukin-1 beta induce nitric oxide formation from primary mouse astrocytes. Neurosci Lett. 1993 Dec 24;164(1-2):229–232. doi: 10.1016/0304-3940(93)90898-u. [DOI] [PubMed] [Google Scholar]
  143. Hickey W. F., Kimura H. Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo. Science. 1988 Jan 15;239(4837):290–292. doi: 10.1126/science.3276004. [DOI] [PubMed] [Google Scholar]
  144. Hickey W. F., Vass K., Lassmann H. Bone marrow-derived elements in the central nervous system: an immunohistochemical and ultrastructural survey of rat chimeras. J Neuropathol Exp Neurol. 1992 May;51(3):246–256. doi: 10.1097/00005072-199205000-00002. [DOI] [PubMed] [Google Scholar]
  145. Hofman F. M., Hinton D. R., Johnson K., Merrill J. E. Tumor necrosis factor identified in multiple sclerosis brain. J Exp Med. 1989 Aug 1;170(2):607–612. doi: 10.1084/jem.170.2.607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  146. Hu S., Sheng W. S., Peterson P. K., Chao C. C. Cytokine modulation of murine microglial cell superoxide production. Glia. 1995 Jan;13(1):45–50. doi: 10.1002/glia.440130106. [DOI] [PubMed] [Google Scholar]
  147. Hu S., Sheng W. S., Peterson P. K., Chao C. C. Differential regulation by cytokines of human astrocyte nitric oxide production. Glia. 1995 Dec;15(4):491–494. doi: 10.1002/glia.440150412. [DOI] [PubMed] [Google Scholar]
  148. Huang Z., Huang P. L., Panahian N., Dalkara T., Fishman M. C., Moskowitz M. A. Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase. Science. 1994 Sep 23;265(5180):1883–1885. doi: 10.1126/science.7522345. [DOI] [PubMed] [Google Scholar]
  149. Hume D. A., Perry V. H., Gordon S. Immunohistochemical localization of a macrophage-specific antigen in developing mouse retina: phagocytosis of dying neurons and differentiation of microglial cells to form a regular array in the plexiform layers. J Cell Biol. 1983 Jul;97(1):253–257. doi: 10.1083/jcb.97.1.253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  150. Hunot S., Boissière F., Faucheux B., Brugg B., Mouatt-Prigent A., Agid Y., Hirsch E. C. Nitric oxide synthase and neuronal vulnerability in Parkinson's disease. Neuroscience. 1996 May;72(2):355–363. doi: 10.1016/0306-4522(95)00578-1. [DOI] [PubMed] [Google Scholar]
  151. Hölscher C., Rose S. P. An inhibitor of nitric oxide synthesis prevents memory formation in the chick. Neurosci Lett. 1992 Oct 12;145(2):165–167. doi: 10.1016/0304-3940(92)90012-v. [DOI] [PubMed] [Google Scholar]
  152. Iadecola C., Xu X., Zhang F., el-Fakahany E. E., Ross M. E. Marked induction of calcium-independent nitric oxide synthase activity after focal cerebral ischemia. J Cereb Blood Flow Metab. 1995 Jan;15(1):52–59. doi: 10.1038/jcbfm.1995.6. [DOI] [PubMed] [Google Scholar]
  153. Iadecola C., Zhang F., Xu S., Casey R., Ross M. E. Inducible nitric oxide synthase gene expression in brain following cerebral ischemia. J Cereb Blood Flow Metab. 1995 May;15(3):378–384. doi: 10.1038/jcbfm.1995.47. [DOI] [PubMed] [Google Scholar]
  154. Ignarro L. J., Gold M. E., Buga G. M., Byrns R. E., Wood K. S., Chaudhuri G., Frank G. Basic polyamino acids rich in arginine, lysine, or ornithine cause both enhancement of and refractoriness to formation of endothelium-derived nitric oxide in pulmonary artery and vein. Circ Res. 1989 Feb;64(2):315–329. doi: 10.1161/01.res.64.2.315. [DOI] [PubMed] [Google Scholar]
  155. Ii M., Sunamoto M., Ohnishi K., Ichimori Y. beta-Amyloid protein-dependent nitric oxide production from microglial cells and neurotoxicity. Brain Res. 1996 May 13;720(1-2):93–100. doi: 10.1016/0006-8993(96)00156-4. [DOI] [PubMed] [Google Scholar]
  156. Imamoto K. Origin of microglia: cell transformation from blood monocytes into macrophagic ameboid cells and microglia. Prog Clin Biol Res. 1981;59A:125–139. [PubMed] [Google Scholar]
  157. Innocenti G. M., Clarke S., Koppel H. Transitory macrophages in the white matter of the developing visual cortex. II. Development and relations with axonal pathways. Brain Res. 1983 Dec;313(1):55–66. doi: 10.1016/0165-3806(83)90201-8. [DOI] [PubMed] [Google Scholar]
  158. Ischiropoulos H., Duran D., Horwitz J. Peroxynitrite-mediated inhibition of DOPA synthesis in PC12 cells. J Neurochem. 1995 Nov;65(5):2366–2372. doi: 10.1046/j.1471-4159.1995.65052366.x. [DOI] [PubMed] [Google Scholar]
  159. Issazadeh S., Mustafa M., Ljungdahl A., Höjeberg B., Dagerlind A., Elde R., Olsson T. Interferon gamma, interleukin 4 and transforming growth factor beta in experimental autoimmune encephalomyelitis in Lewis rats: dynamics of cellular mRNA expression in the central nervous system and lymphoid cells. J Neurosci Res. 1995 Apr 1;40(5):579–590. doi: 10.1002/jnr.490400503. [DOI] [PubMed] [Google Scholar]
  160. Itagaki S., McGeer P. L., Akiyama H., Zhu S., Selkoe D. Relationship of microglia and astrocytes to amyloid deposits of Alzheimer disease. J Neuroimmunol. 1989 Oct;24(3):173–182. doi: 10.1016/0165-5728(89)90115-x. [DOI] [PubMed] [Google Scholar]
  161. Janssens S. P., Shimouchi A., Quertermous T., Bloch D. B., Bloch K. D. Cloning and expression of a cDNA encoding human endothelium-derived relaxing factor/nitric oxide synthase. J Biol Chem. 1992 Jul 25;267(21):14519–14522. [PubMed] [Google Scholar]
  162. Jordan F. L., Thomas W. E. Identification of microglia in primary cultures of mixed cerebral cortical cells. Brain Res Bull. 1987 Jul;19(1):153–159. doi: 10.1016/0361-9230(87)90180-8. [DOI] [PubMed] [Google Scholar]
  163. Kalderon N., Ahonen K., Fedoroff S. Developmental transition in plasticity properties of differentiating astrocytes: age-related biochemical profile of plasminogen activators in astroglial cultures. Glia. 1990;3(5):413–426. doi: 10.1002/glia.440030513. [DOI] [PubMed] [Google Scholar]
  164. Karpus W. J., Swanborg R. H. CD4+ suppressor cells inhibit the function of effector cells of experimental autoimmune encephalomyelitis through a mechanism involving transforming growth factor-beta. J Immunol. 1991 Feb 15;146(4):1163–1168. [PubMed] [Google Scholar]
  165. Kibayashi K., Mastri A. R., Hirsch C. S. Neuropathology of human immunodeficiency virus infection at different disease stages. Hum Pathol. 1996 Jul;27(7):637–642. doi: 10.1016/s0046-8177(96)90391-3. [DOI] [PubMed] [Google Scholar]
  166. Kiefer R., Streit W. J., Toyka K. V., Kreutzberg G. W., Hartung H. P. Transforming growth factor-beta 1: a lesion-associated cytokine of the nervous system. Int J Dev Neurosci. 1995 Jun-Jul;13(3-4):331–339. doi: 10.1016/0736-5748(94)00074-d. [DOI] [PubMed] [Google Scholar]
  167. Kim Y. S., Täuber M. G. Neurotoxicity of glia activated by gram-positive bacterial products depends on nitric oxide production. Infect Immun. 1996 Aug;64(8):3148–3153. doi: 10.1128/iai.64.8.3148-3153.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  168. Koka P., He K., Zack J. A., Kitchen S., Peacock W., Fried I., Tran T., Yashar S. S., Merrill J. E. Human immunodeficiency virus 1 envelope proteins induce interleukin 1, tumor necrosis factor alpha, and nitric oxide in glial cultures derived from fetal, neonatal, and adult human brain. J Exp Med. 1995 Oct 1;182(4):941–951. doi: 10.1084/jem.182.4.941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  169. Koprowski H., Zheng Y. M., Heber-Katz E., Fraser N., Rorke L., Fu Z. F., Hanlon C., Dietzschold B. In vivo expression of inducible nitric oxide synthase in experimentally induced neurologic diseases. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):3024–3027. doi: 10.1073/pnas.90.7.3024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  170. Korytko P. J., Boje K. M. Pharmacological characterization of nitric oxide production in a rat model of meningitis. Neuropharmacology. 1996 Feb;35(2):231–237. doi: 10.1016/0028-3908(95)00162-x. [DOI] [PubMed] [Google Scholar]
  171. Kuruvilla A. P., Shah R., Hochwald G. M., Liggitt H. D., Palladino M. A., Thorbecke G. J. Protective effect of transforming growth factor beta 1 on experimental autoimmune diseases in mice. Proc Natl Acad Sci U S A. 1991 Apr 1;88(7):2918–2921. doi: 10.1073/pnas.88.7.2918. [DOI] [PMC free article] [PubMed] [Google Scholar]
  172. Lafortune L., Nalbantoglu J., Antel J. P. Expression of tumor necrosis factor alpha (TNF alpha) and interleukin 6 (IL-6) mRNA in adult human astrocytes: comparison with adult microglia and fetal astrocytes. J Neuropathol Exp Neurol. 1996 May;55(5):515–521. doi: 10.1097/00005072-199605000-00003. [DOI] [PubMed] [Google Scholar]
  173. Lane T. E., Buchmeier M. J., Watry D. D., Fox H. S. Expression of inflammatory cytokines and inducible nitric oxide synthase in brains of SIV-infected rhesus monkeys: applications to HIV-induced central nervous system disease. Mol Med. 1996 Jan;2(1):27–37. [PMC free article] [PubMed] [Google Scholar]
  174. Langeveld C. H., Jongenelen C. A., Schepens E., Stoof J. C., Bast A., Drukarch B. Cultured rat striatal and cortical astrocytes protect mesencephalic dopaminergic neurons against hydrogen peroxide toxicity independent of their effect on neuronal development. Neurosci Lett. 1995 Jun 2;192(1):13–16. doi: 10.1016/0304-3940(95)11596-o. [DOI] [PubMed] [Google Scholar]
  175. Lassmann H., Schmied M., Vass K., Hickey W. F. Bone marrow derived elements and resident microglia in brain inflammation. Glia. 1993 Jan;7(1):19–24. doi: 10.1002/glia.440070106. [DOI] [PubMed] [Google Scholar]
  176. Lawson L. J., Perry V. H., Dri P., Gordon S. Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience. 1990;39(1):151–170. doi: 10.1016/0306-4522(90)90229-w. [DOI] [PubMed] [Google Scholar]
  177. Lawson L. J., Perry V. H., Gordon S. Turnover of resident microglia in the normal adult mouse brain. Neuroscience. 1992;48(2):405–415. doi: 10.1016/0306-4522(92)90500-2. [DOI] [PubMed] [Google Scholar]
  178. Lee S. C., Dickson D. W., Brosnan C. F. Interleukin-1, nitric oxide and reactive astrocytes. Brain Behav Immun. 1995 Dec;9(4):345–354. doi: 10.1006/brbi.1995.1032. [DOI] [PubMed] [Google Scholar]
  179. Lee S. C., Dickson D. W., Liu W., Brosnan C. F. Induction of nitric oxide synthase activity in human astrocytes by interleukin-1 beta and interferon-gamma. J Neuroimmunol. 1993 Jul;46(1-2):19–24. doi: 10.1016/0165-5728(93)90229-r. [DOI] [PubMed] [Google Scholar]
  180. Lee S. C., Liu W., Brosnan C. F., Dickson D. W. Characterization of primary human fetal dissociated central nervous system cultures with an emphasis on microglia. Lab Invest. 1992 Oct;67(4):465–476. [PubMed] [Google Scholar]
  181. Lee S. C., Liu W., Brosnan C. F., Dickson D. W. GM-CSF promotes proliferation of human fetal and adult microglia in primary cultures. Glia. 1994 Dec;12(4):309–318. doi: 10.1002/glia.440120407. [DOI] [PubMed] [Google Scholar]
  182. Lee S. C., Liu W., Dickson D. W., Brosnan C. F., Berman J. W. Cytokine production by human fetal microglia and astrocytes. Differential induction by lipopolysaccharide and IL-1 beta. J Immunol. 1993 Apr 1;150(7):2659–2667. [PubMed] [Google Scholar]
  183. Leong S. K., Ling E. A. Amoeboid and ramified microglia: their interrelationship and response to brain injury. Glia. 1992;6(1):39–47. doi: 10.1002/glia.440060106. [DOI] [PubMed] [Google Scholar]
  184. Levi-Montalcini R., Angeletti P. U. Nerve growth factor. Physiol Rev. 1968 Jul;48(3):534–569. doi: 10.1152/physrev.1968.48.3.534. [DOI] [PubMed] [Google Scholar]
  185. Liew F. Y., Li Y., Severn A., Millott S., Schmidt J., Salter M., Moncada S. A possible novel pathway of regulation by murine T helper type-2 (Th2) cells of a Th1 cell activity via the modulation of the induction of nitric oxide synthase on macrophages. Eur J Immunol. 1991 Oct;21(10):2489–2494. doi: 10.1002/eji.1830211027. [DOI] [PubMed] [Google Scholar]
  186. Lindholm D., Castrén E., Kiefer R., Zafra F., Thoenen H. Transforming growth factor-beta 1 in the rat brain: increase after injury and inhibition of astrocyte proliferation. J Cell Biol. 1992 Apr;117(2):395–400. doi: 10.1083/jcb.117.2.395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  187. Lindholm D., Heumann R., Meyer M., Thoenen H. Interleukin-1 regulates synthesis of nerve growth factor in non-neuronal cells of rat sciatic nerve. Nature. 1987 Dec 17;330(6149):658–659. doi: 10.1038/330658a0. [DOI] [PubMed] [Google Scholar]
  188. Ling E. A., Wong W. C. The origin and nature of ramified and amoeboid microglia: a historical review and current concepts. Glia. 1993 Jan;7(1):9–18. doi: 10.1002/glia.440070105. [DOI] [PubMed] [Google Scholar]
  189. Lipton S. A. Requirement for macrophages in neuronal injury induced by HIV envelope protein gp120. Neuroreport. 1992 Oct;3(10):913–915. doi: 10.1097/00001756-199210000-00023. [DOI] [PubMed] [Google Scholar]
  190. Lipton S. A., Singel D. J., Stamler J. S. Nitric oxide in the central nervous system. Prog Brain Res. 1994;103:359–364. doi: 10.1016/s0079-6123(08)61149-8. [DOI] [PubMed] [Google Scholar]
  191. Liu W., Brosnan C. F., Dickson D. W., Lee S. C. Macrophage colony-stimulating factor mediates astrocyte-induced microglial ramification in human fetal central nervous system culture. Am J Pathol. 1994 Jul;145(1):48–53. [PMC free article] [PubMed] [Google Scholar]
  192. Loscalzo J., Braunwald E. Tissue plasminogen activator. N Engl J Med. 1988 Oct 6;319(14):925–931. doi: 10.1056/NEJM198810063191407. [DOI] [PubMed] [Google Scholar]
  193. Lowenstein C. J., Glatt C. S., Bredt D. S., Snyder S. H. Cloned and expressed macrophage nitric oxide synthase contrasts with the brain enzyme. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):6711–6715. doi: 10.1073/pnas.89.15.6711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  194. Lyons R. M., Gentry L. E., Purchio A. F., Moses H. L. Mechanism of activation of latent recombinant transforming growth factor beta 1 by plasmin. J Cell Biol. 1990 Apr;110(4):1361–1367. doi: 10.1083/jcb.110.4.1361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  195. Maddon P. J., Dalgleish A. G., McDougal J. S., Clapham P. R., Weiss R. A., Axel R. The T4 gene encodes the AIDS virus receptor and is expressed in the immune system and the brain. Cell. 1986 Nov 7;47(3):333–348. doi: 10.1016/0092-8674(86)90590-8. [DOI] [PubMed] [Google Scholar]
  196. Mallat M., Houlgatte R., Brachet P., Prochiantz A. Lipopolysaccharide-stimulated rat brain macrophages release NGF in vitro. Dev Biol. 1989 May;133(1):309–311. doi: 10.1016/0012-1606(89)90322-9. [DOI] [PubMed] [Google Scholar]
  197. Marletta M. A. Nitric oxide synthase structure and mechanism. J Biol Chem. 1993 Jun 15;268(17):12231–12234. [PubMed] [Google Scholar]
  198. Marletta M. A., Yoon P. S., Iyengar R., Leaf C. D., Wishnok J. S. Macrophage oxidation of L-arginine to nitrite and nitrate: nitric oxide is an intermediate. Biochemistry. 1988 Nov 29;27(24):8706–8711. doi: 10.1021/bi00424a003. [DOI] [PubMed] [Google Scholar]
  199. Martin P. M., O'Callaghan J. P. A direct comparison of GFAP immunocytochemistry and GFAP concentration in various regions of ethanol-fixed rat and mouse brain. J Neurosci Methods. 1995 May;58(1-2):181–192. doi: 10.1016/0165-0270(94)00175-g. [DOI] [PubMed] [Google Scholar]
  200. Marty S., Dusart I., Peschanski M. Glial changes following an excitotoxic lesion in the CNS--I. Microglia/macrophages. Neuroscience. 1991;45(3):529–539. doi: 10.1016/0306-4522(91)90268-s. [DOI] [PubMed] [Google Scholar]
  201. Matsumoto Y., Fujiwara M. Absence of donor-type major histocompatibility complex class I antigen-bearing microglia in the rat central nervous system of radiation bone marrow chimeras. J Neuroimmunol. 1987 Dec;17(1):71–82. doi: 10.1016/0165-5728(87)90032-4. [DOI] [PubMed] [Google Scholar]
  202. Matsuo M., Hamasaki Y., Fujiyama F., Miyazaki S. Eicosanoids are produced by microglia, not by astrocytes, in rat glial cell cultures. Brain Res. 1995 Jul 10;685(1-2):201–204. doi: 10.1016/0006-8993(95)00490-h. [DOI] [PubMed] [Google Scholar]
  203. McCarthy K. D., de Vellis J. Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J Cell Biol. 1980 Jun;85(3):890–902. doi: 10.1083/jcb.85.3.890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  204. McCartney-Francis N., Mizel D., Wong H., Wahl L., Wahl S. TGF-beta regulates production of growth factors and TGF-beta by human peripheral blood monocytes. Growth Factors. 1990;4(1):27–35. doi: 10.3109/08977199009011007. [DOI] [PubMed] [Google Scholar]
  205. McGeer P. L., Akiyama H., Itagaki S., McGeer E. G. Immune system response in Alzheimer's disease. Can J Neurol Sci. 1989 Nov;16(4 Suppl):516–527. doi: 10.1017/s0317167100029863. [DOI] [PubMed] [Google Scholar]
  206. McGeer P. L., Itagaki S., Boyes B. E., McGeer E. G. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson's and Alzheimer's disease brains. Neurology. 1988 Aug;38(8):1285–1291. doi: 10.1212/wnl.38.8.1285. [DOI] [PubMed] [Google Scholar]
  207. McGeer P. L., Itagaki S., Tago H., McGeer E. G. Reactive microglia in patients with senile dementia of the Alzheimer type are positive for the histocompatibility glycoprotein HLA-DR. Neurosci Lett. 1987 Aug 18;79(1-2):195–200. doi: 10.1016/0304-3940(87)90696-3. [DOI] [PubMed] [Google Scholar]
  208. McNeill H., Williams C., Guan J., Dragunow M., Lawlor P., Sirimanne E., Nikolics K., Gluckman P. Neuronal rescue with transforming growth factor-beta 1 after hypoxic-ischaemic brain injury. Neuroreport. 1994 Apr 14;5(8):901–904. doi: 10.1097/00001756-199404000-00012. [DOI] [PubMed] [Google Scholar]
  209. McRae A., Gilland E., Bona E., Hagberg H. Microglia activation after neonatal hypoxic-ischemia. Brain Res Dev Brain Res. 1995 Feb 16;84(2):245–252. doi: 10.1016/0165-3806(94)00177-2. [DOI] [PubMed] [Google Scholar]
  210. Meldrum B., Garthwaite J. Excitatory amino acid neurotoxicity and neurodegenerative disease. Trends Pharmacol Sci. 1990 Sep;11(9):379–387. doi: 10.1016/0165-6147(90)90184-a. [DOI] [PubMed] [Google Scholar]
  211. Merrill J. E., Ignarro L. J., Sherman M. P., Melinek J., Lane T. E. Microglial cell cytotoxicity of oligodendrocytes is mediated through nitric oxide. J Immunol. 1993 Aug 15;151(4):2132–2141. [PubMed] [Google Scholar]
  212. Merrill J. E., Strom S. R., Ellison G. W., Myers L. W. In vitro study of mediators of inflammation in multiple sclerosis. J Clin Immunol. 1989 Mar;9(2):84–96. doi: 10.1007/BF00916935. [DOI] [PubMed] [Google Scholar]
  213. Merrill J. E., Zimmerman R. P. Natural and induced cytotoxicity of oligodendrocytes by microglia is inhibitable by TGF beta. Glia. 1991;4(3):327–331. doi: 10.1002/glia.440040311. [DOI] [PubMed] [Google Scholar]
  214. Miller C., Tsatas O., David S. Dibutyryl cAMP, interleukin-1 beta, and macrophage conditioned medium enhance the ability of astrocytes to promote neurite growth. J Neurosci Res. 1994 May 1;38(1):56–63. doi: 10.1002/jnr.490380108. [DOI] [PubMed] [Google Scholar]
  215. Minghetti L., Nicolini A., Polazzi E., Créminon C., Maclouf J., Levi G. Inducible nitric oxide synthase expression in activated rat microglial cultures is downregulated by exogenous prostaglandin E2 and by cyclooxygenase inhibitors. Glia. 1997 Feb;19(2):152–160. [PubMed] [Google Scholar]
  216. Minghetti L., Polazzi E., Nicolini A., Créminon C., Levi G. Interferon-gamma and nitric oxide down-regulate lipopolysaccharide-induced prostanoid production in cultured rat microglial cells by inhibiting cyclooxygenase-2 expression. J Neurochem. 1996 May;66(5):1963–1970. doi: 10.1046/j.1471-4159.1996.66051963.x. [DOI] [PubMed] [Google Scholar]
  217. Misko T. P., Moore W. M., Kasten T. P., Nickols G. A., Corbett J. A., Tilton R. G., McDaniel M. L., Williamson J. R., Currie M. G. Selective inhibition of the inducible nitric oxide synthase by aminoguanidine. Eur J Pharmacol. 1993 Mar 16;233(1):119–125. doi: 10.1016/0014-2999(93)90357-n. [DOI] [PubMed] [Google Scholar]
  218. Mission J. P., Takahashi T., Caviness V. S., Jr Ontogeny of radial and other astroglial cells in murine cerebral cortex. Glia. 1991;4(2):138–148. doi: 10.1002/glia.440040205. [DOI] [PubMed] [Google Scholar]
  219. Mitrovic B., Ignarro L. J., Vinters H. V., Akers M. A., Schmid I., Uittenbogaart C., Merrill J. E. Nitric oxide induces necrotic but not apoptotic cell death in oligodendrocytes. Neuroscience. 1995 Mar;65(2):531–539. doi: 10.1016/0306-4522(94)00491-m. [DOI] [PubMed] [Google Scholar]
  220. Miyazono K., Yuki K., Takaku F., Wernstedt C., Kanzaki T., Olofsson A., Hellman U., Heldin C. H. Latent forms of TGF-beta: structure and biology. Ann N Y Acad Sci. 1990;593:51–58. doi: 10.1111/j.1749-6632.1990.tb16099.x. [DOI] [PubMed] [Google Scholar]
  221. Mizuno T., Sawada M., Marunouchi T., Suzumura A. Production of interleukin-10 by mouse glial cells in culture. Biochem Biophys Res Commun. 1994 Dec 30;205(3):1907–1915. doi: 10.1006/bbrc.1994.2893. [DOI] [PubMed] [Google Scholar]
  222. Mocchetti I., Wrathall J. R. Neurotrophic factors in central nervous system trauma. J Neurotrauma. 1995 Oct;12(5):853–870. doi: 10.1089/neu.1995.12.853. [DOI] [PubMed] [Google Scholar]
  223. Molina-Holgado F., Lledó A., Guaza C. Evidence for cyclooxygenase activation by nitric oxide in astrocytes. Glia. 1995 Oct;15(2):167–172. doi: 10.1002/glia.440150209. [DOI] [PubMed] [Google Scholar]
  224. Mollace V., Colasanti M., Persichini T., Bagetta G., Lauro G. M., Nistico G. HIV gp120 glycoprotein stimulates the inducible isoform of no synthase in human cultured astrocytoma cells. Biochem Biophys Res Commun. 1993 Jul 15;194(1):439–445. doi: 10.1006/bbrc.1993.1839. [DOI] [PubMed] [Google Scholar]
  225. Monard D. Cell-derived proteases and protease inhibitors as regulators of neurite outgrowth. Trends Neurosci. 1988 Dec;11(12):541–544. doi: 10.1016/0166-2236(88)90182-8. [DOI] [PubMed] [Google Scholar]
  226. Morganti-Kossmann M. C., Kossmann T., Brandes M. E., Mergenhagen S. E., Wahl S. M. Autocrine and paracrine regulation of astrocyte function by transforming growth factor-beta. J Neuroimmunol. 1992 Jul;39(1-2):163–173. doi: 10.1016/0165-5728(92)90185-n. [DOI] [PubMed] [Google Scholar]
  227. Murabe Y., Ibata Y., Sano Y. Morphological studies on neuroglia. III. Macrophage response and "microgliocytosis" in kainic acid-induced lesions. Cell Tissue Res. 1981;218(1):75–86. doi: 10.1007/BF00210092. [DOI] [PubMed] [Google Scholar]
  228. Murabe Y., Sano Y. Morphological studies on neuroglia. VI. Postnatal development of microglial cells. Cell Tissue Res. 1982;225(3):469–485. doi: 10.1007/BF00214798. [DOI] [PubMed] [Google Scholar]
  229. Murabe Y., Sano Y. Morphological studies on neuroglia. VII. Distribution of "brain macrophages" in brains of neonatal and adult rats, as determined by means of immunohistochemistry. Cell Tissue Res. 1983;229(1):85–95. doi: 10.1007/BF00217882. [DOI] [PubMed] [Google Scholar]
  230. Murphy S., Simmons M. L., Agullo L., Garcia A., Feinstein D. L., Galea E., Reis D. J., Minc-Golomb D., Schwartz J. P. Synthesis of nitric oxide in CNS glial cells. Trends Neurosci. 1993 Aug;16(8):323–328. doi: 10.1016/0166-2236(93)90109-y. [DOI] [PubMed] [Google Scholar]
  231. Nagata K., Takei N., Nakajima K., Saito H., Kohsaka S. Microglial conditioned medium promotes survival and development of cultured mesencephalic neurons from embryonic rat brain. J Neurosci Res. 1993 Feb 15;34(3):357–363. doi: 10.1002/jnr.490340313. [DOI] [PubMed] [Google Scholar]
  232. Nakajima K., Nagata K., Hamanoue M., Takemoto N., Kohsaka S. Microglia-derived elastase produces a low-molecular-weight plasminogen that enhances neurite outgrowth in rat neocortical explant cultures. J Neurochem. 1993 Dec;61(6):2155–2163. doi: 10.1111/j.1471-4159.1993.tb07454.x. [DOI] [PubMed] [Google Scholar]
  233. Nakajima K., Takemoto N., Kohsaka S. Retinoic acid enhances the secretion of plasminogen from cultured rat microglia. FEBS Lett. 1992 Dec 14;314(2):167–170. doi: 10.1016/0014-5793(92)80966-k. [DOI] [PubMed] [Google Scholar]
  234. Nakajima K., Tsuzaki N., Nagata K., Takemoto N., Kohsaka S. Production and secretion of plasminogen in cultured rat brain microglia. FEBS Lett. 1992 Aug 17;308(2):179–182. doi: 10.1016/0014-5793(92)81270-v. [DOI] [PubMed] [Google Scholar]
  235. Nathan C. Nitric oxide as a secretory product of mammalian cells. FASEB J. 1992 Sep;6(12):3051–3064. [PubMed] [Google Scholar]
  236. Nicotera P., Bonfoco E., Brüne B. Mechanisms for nitric oxide-induced cell death: involvement of apoptosis. Adv Neuroimmunol. 1995;5(4):411–420. doi: 10.1016/0960-5428(95)00025-9. [DOI] [PubMed] [Google Scholar]
  237. Nieto-Sampedro M., Berman M. A. Interleukin-1-like activity in rat brain: sources, targets, and effect of injury. J Neurosci Res. 1987;17(3):214–219. doi: 10.1002/jnr.490170303. [DOI] [PubMed] [Google Scholar]
  238. Noble M., Fok-Seang J., Cohen J. Glia are a unique substrate for the in vitro growth of central nervous system neurons. J Neurosci. 1984 Jul;4(7):1892–1903. doi: 10.1523/JNEUROSCI.04-07-01892.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  239. Noble M. Points of controversy in the O-2A lineage: clocks and type-2 astrocytes. Glia. 1991;4(2):157–164. doi: 10.1002/glia.440040207. [DOI] [PubMed] [Google Scholar]
  240. Nowicki J. P., Duval D., Poignet H., Scatton B. Nitric oxide mediates neuronal death after focal cerebral ischemia in the mouse. Eur J Pharmacol. 1991 Nov 12;204(3):339–340. doi: 10.1016/0014-2999(91)90862-k. [DOI] [PubMed] [Google Scholar]
  241. Nuovo G. J., Alfieri M. L. AIDS dementia is associated with massive, activated HIV-1 infection and concomitant expression of several cytokines. Mol Med. 1996 May;2(3):358–366. [PMC free article] [PubMed] [Google Scholar]
  242. O'Callaghan J. P. Assessment of neurotoxicity: use of glial fibrillary acidic protein as a biomarker. Biomed Environ Sci. 1991 Jun;4(1-2):197–206. [PubMed] [Google Scholar]
  243. O'Callaghan J. P., Jensen K. F. Enhanced expression of glial fibrillary acidic protein and the cupric silver degeneration reaction can be used as sensitive and early indicators of neurotoxicity. Neurotoxicology. 1992 Spring;13(1):113–122. [PubMed] [Google Scholar]
  244. Ogawa M., Araki M., Nagatsu I., Yoshida M. Astroglial cell alteration caused by neurotoxins: immunohistochemical observations with antibodies to glial fibrillary acidic protein, laminin, and tyrosine hydroxylase. Exp Neurol. 1989 Nov;106(2):187–196. doi: 10.1016/0014-4886(89)90093-9. [DOI] [PubMed] [Google Scholar]
  245. Ohno M., Yamamoto T., Watanabe S. Deficits in working memory following inhibition of hippocampal nitric oxide synthesis in the rat. Brain Res. 1993 Dec 31;632(1-2):36–40. doi: 10.1016/0006-8993(93)91135-f. [DOI] [PubMed] [Google Scholar]
  246. Oswald I. P., Gazzinelli R. T., Sher A., James S. L. IL-10 synergizes with IL-4 and transforming growth factor-beta to inhibit macrophage cytotoxic activity. J Immunol. 1992 Jun 1;148(11):3578–3582. [PubMed] [Google Scholar]
  247. Paakkari I., Lindsberg P. Nitric oxide in the central nervous system. Ann Med. 1995 Jun;27(3):369–377. doi: 10.3109/07853899509002590. [DOI] [PubMed] [Google Scholar]
  248. Panitch H. S., Hirsch R. L., Schindler J., Johnson K. P. Treatment of multiple sclerosis with gamma interferon: exacerbations associated with activation of the immune system. Neurology. 1987 Jul;37(7):1097–1102. doi: 10.1212/wnl.37.7.1097. [DOI] [PubMed] [Google Scholar]
  249. Park S. K., Grzybicki D., Lin H. L., Murphy S. Modulation of inducible nitric oxide synthase expression in astroglial cells. Neuropharmacology. 1994 Nov;33(11):1419–1423. doi: 10.1016/0028-3908(94)90044-2. [DOI] [PubMed] [Google Scholar]
  250. Park S. K., Lin H. L., Murphy S. Nitric oxide limits transcriptional induction of nitric oxide synthase in CNS glial cells. Biochem Biophys Res Commun. 1994 Jun 15;201(2):762–768. doi: 10.1006/bbrc.1994.1766. [DOI] [PubMed] [Google Scholar]
  251. Pasinetti G. M., Nichols N. R., Tocco G., Morgan T., Laping N., Finch C. E. Transforming growth factor beta 1 and fibronectin messenger RNA in rat brain: responses to injury and cell-type localization. Neuroscience. 1993 Jun;54(4):893–907. doi: 10.1016/0306-4522(93)90583-2. [DOI] [PubMed] [Google Scholar]
  252. Peress N. S., Perillo E. Differential expression of TGF-beta 1, 2 and 3 isotypes in Alzheimer's disease: a comparative immunohistochemical study with cerebral infarction, aged human and mouse control brains. J Neuropathol Exp Neurol. 1995 Nov;54(6):802–811. doi: 10.1097/00005072-199511000-00007. [DOI] [PubMed] [Google Scholar]
  253. Peress N. S., Perillo E., Seidman R. J. Glial transforming growth factor (TGF)-beta isotypes in multiple sclerosis: differential glial expression of TGF-beta 1, 2 and 3 isotypes in multiple sclerosis. J Neuroimmunol. 1996 Dec;71(1-2):115–123. doi: 10.1016/s0165-5728(96)00135-x. [DOI] [PubMed] [Google Scholar]
  254. Perrella O., Finelli L., Carrieri P. B. The role of cytokines in AIDS-dementia complex. Acta Neurol (Napoli) 1992 Aug-Dec;14(4-6):342–344. [PubMed] [Google Scholar]
  255. Perretti M., Szabó C., Thiemermann C. Effect of interleukin-4 and interleukin-10 on leucocyte migration and nitric oxide production in the mouse. Br J Pharmacol. 1995 Oct;116(4):2251–2257. doi: 10.1111/j.1476-5381.1995.tb15061.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  256. Perry V. H., Gordon S. Macrophages and microglia in the nervous system. Trends Neurosci. 1988 Jun;11(6):273–277. doi: 10.1016/0166-2236(88)90110-5. [DOI] [PubMed] [Google Scholar]
  257. Perry V. H., Gordon S. Modulation of CD4 antigen on macrophages and microglia in rat brain. J Exp Med. 1987 Oct 1;166(4):1138–1143. doi: 10.1084/jem.166.4.1138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  258. Perry V. H., Hume D. A., Gordon S. Immunohistochemical localization of macrophages and microglia in the adult and developing mouse brain. Neuroscience. 1985 Jun;15(2):313–326. doi: 10.1016/0306-4522(85)90215-5. [DOI] [PubMed] [Google Scholar]
  259. Peterson P. K., Hu S., Anderson W. R., Chao C. C. Nitric oxide production and neurotoxicity mediated by activated microglia from human versus mouse brain. J Infect Dis. 1994 Aug;170(2):457–460. doi: 10.1093/infdis/170.2.457. [DOI] [PubMed] [Google Scholar]
  260. Peunova N., Enikolopov G. Amplification of calcium-induced gene transcription by nitric oxide in neuronal cells. Nature. 1993 Jul 29;364(6436):450–453. doi: 10.1038/364450a0. [DOI] [PubMed] [Google Scholar]
  261. Piani D., Frei K., Do K. Q., Cuénod M., Fontana A. Murine brain macrophages induced NMDA receptor mediated neurotoxicity in vitro by secreting glutamate. Neurosci Lett. 1991 Dec 9;133(2):159–162. doi: 10.1016/0304-3940(91)90559-c. [DOI] [PubMed] [Google Scholar]
  262. Pietraforte D., Tritarelli E., Testa U., Minetti M. gp120 HIV envelope glycoprotein increases the production of nitric oxide in human monocyte-derived macrophages. J Leukoc Biol. 1994 Feb;55(2):175–182. doi: 10.1002/jlb.55.2.175. [DOI] [PubMed] [Google Scholar]
  263. Racke M. K., Dhib-Jalbut S., Cannella B., Albert P. S., Raine C. S., McFarlin D. E. Prevention and treatment of chronic relapsing experimental allergic encephalomyelitis by transforming growth factor-beta 1. J Immunol. 1991 May 1;146(9):3012–3017. [PubMed] [Google Scholar]
  264. Reif D. W., Simmons R. D. Nitric oxide mediates iron release from ferritin. Arch Biochem Biophys. 1990 Dec;283(2):537–541. doi: 10.1016/0003-9861(90)90680-w. [DOI] [PubMed] [Google Scholar]
  265. Rimaniol A. C., Lekieffre D., Serrano A., Masson A., Benavides J., Zavala F. Biphasic transforming growth factor-beta production flanking the pro-inflammatory cytokine response in cerebral trauma. Neuroreport. 1995 Dec 29;7(1):133–136. [PubMed] [Google Scholar]
  266. Romanic A. M., Madri J. A. Extracellular matrix-degrading proteinases in the nervous system. Brain Pathol. 1994 Apr;4(2):145–156. doi: 10.1111/j.1750-3639.1994.tb00825.x. [DOI] [PubMed] [Google Scholar]
  267. Rozemuller J. M., Eikelenboom P., Pals S. T., Stam F. C. Microglial cells around amyloid plaques in Alzheimer's disease express leucocyte adhesion molecules of the LFA-1 family. Neurosci Lett. 1989 Jul 3;101(3):288–292. doi: 10.1016/0304-3940(89)90547-8. [DOI] [PubMed] [Google Scholar]
  268. Rudge J. S., Pasnikowski E. M., Holst P., Lindsay R. M. Changes in neurotrophic factor expression and receptor activation following exposure of hippocampal neuron/astrocyte cocultures to kainic acid. J Neurosci. 1995 Oct;15(10):6856–6867. doi: 10.1523/JNEUROSCI.15-10-06856.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  269. Ruuls S. R., Van Der Linden S., Sontrop K., Huitinga I., Dijkstra C. D. Aggravation of experimental allergic encephalomyelitis (EAE) by administration of nitric oxide (NO) synthase inhibitors. Clin Exp Immunol. 1996 Mar;103(3):467–474. doi: 10.1111/j.1365-2249.1996.tb08304.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  270. Saad B., Constam D. B., Ortmann R., Moos M., Fontana A., Schachner M. Astrocyte-derived TGF-beta 2 and NGF differentially regulate neural recognition molecule expression by cultured astrocytes. J Cell Biol. 1991 Oct;115(2):473–484. doi: 10.1083/jcb.115.2.473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  271. Samuels V., Barrett J. M., Bockman S., Pantazis C. G., Allen M. B., Jr Immunocytochemical study of transforming growth factor expression in benign and malignant gliomas. Am J Pathol. 1989 Apr;134(4):894–902. [PMC free article] [PubMed] [Google Scholar]
  272. Santambrogio L., Hochwald G. M., Saxena B., Leu C. H., Martz J. E., Carlino J. A., Ruddle N. H., Palladino M. A., Gold L. I., Thorbecke G. J. Studies on the mechanisms by which transforming growth factor-beta (TGF-beta) protects against allergic encephalomyelitis. Antagonism between TGF-beta and tumor necrosis factor. J Immunol. 1993 Jul 15;151(2):1116–1127. [PubMed] [Google Scholar]
  273. Sawada M., Kondo N., Suzumura A., Marunouchi T. Production of tumor necrosis factor-alpha by microglia and astrocytes in culture. Brain Res. 1989 Jul 10;491(2):394–397. doi: 10.1016/0006-8993(89)90078-4. [DOI] [PubMed] [Google Scholar]
  274. Sawada M., Suzumura A., Itoh Y., Marunouchi T. Production of interleukin-5 by mouse astrocytes and microglia in culture. Neurosci Lett. 1993 Jun 11;155(2):175–178. doi: 10.1016/0304-3940(93)90701-l. [DOI] [PubMed] [Google Scholar]
  275. Sawada M., Suzumura A., Marunouchi T. TNF alpha induces IL-6 production by astrocytes but not by microglia. Brain Res. 1992 Jun 26;583(1-2):296–299. doi: 10.1016/s0006-8993(10)80037-x. [DOI] [PubMed] [Google Scholar]
  276. Sawada M., Suzumura A., Yamamoto H., Marunouchi T. Activation and proliferation of the isolated microglia by colony stimulating factor-1 and possible involvement of protein kinase C. Brain Res. 1990 Feb 12;509(1):119–124. doi: 10.1016/0006-8993(90)90317-5. [DOI] [PubMed] [Google Scholar]
  277. Schmalenbach C., Müller H. W. Astroglia-neuron interactions that promote long-term neuronal survival. J Chem Neuroanat. 1993 Jul-Aug;6(4):229–237. doi: 10.1016/0891-0618(93)90044-5. [DOI] [PubMed] [Google Scholar]
  278. Schmidtmayer J., Jacobsen C., Miksch G., Sievers J. Blood monocytes and spleen macrophages differentiate into microglia-like cells on monolayers of astrocytes: membrane currents. Glia. 1994 Dec;12(4):259–267. doi: 10.1002/glia.440120403. [DOI] [PubMed] [Google Scholar]
  279. Schultze B., Korr H. Cell kinetic studies of different cell types in the developing and adult brain of the rat and the mouse: a review. Cell Tissue Kinet. 1981 May;14(3):309–325. doi: 10.1111/j.1365-2184.1981.tb00535.x. [DOI] [PubMed] [Google Scholar]
  280. Schuman E. M., Madison D. V. A requirement for the intercellular messenger nitric oxide in long-term potentiation. Science. 1991 Dec 6;254(5037):1503–1506. doi: 10.1126/science.1720572. [DOI] [PubMed] [Google Scholar]
  281. Schwartz J. P., Wilson D. J. Preparation and characterization of type 1 astrocytes cultured from adult rat cortex, cerebellum, and striatum. Glia. 1992;5(1):75–80. doi: 10.1002/glia.440050111. [DOI] [PubMed] [Google Scholar]
  282. Seeds N. W., Williams B. L., Bickford P. C. Tissue plasminogen activator induction in Purkinje neurons after cerebellar motor learning. Science. 1995 Dec 22;270(5244):1992–1994. doi: 10.1126/science.270.5244.1992. [DOI] [PubMed] [Google Scholar]
  283. Shehab S. A., Cronly-Dillon J. R., Nona S. N., Stafford C. A. Preferential histochemical staining of protoplasmic and fibrous astrocytes in rat CNS with GFAP antibodies using different fixatives. Brain Res. 1990 Jun 4;518(1-2):347–352. doi: 10.1016/0006-8993(90)90996-o. [DOI] [PubMed] [Google Scholar]
  284. Sherman M. P., Griscavage J. M., Ignarro L. J. Nitric oxide-mediated neuronal injury in multiple sclerosis. Med Hypotheses. 1992 Oct;39(2):143–146. doi: 10.1016/0306-9877(92)90175-c. [DOI] [PubMed] [Google Scholar]
  285. Shimojo M., Nakajima K., Takei N., Hamanoue M., Kohsaka S. Production of basic fibroblast growth factor in cultured rat brain microglia. Neurosci Lett. 1991 Feb 25;123(2):229–231. doi: 10.1016/0304-3940(91)90937-o. [DOI] [PubMed] [Google Scholar]
  286. Sievers J., Parwaresch R., Wottge H. U. Blood monocytes and spleen macrophages differentiate into microglia-like cells on monolayers of astrocytes: morphology. Glia. 1994 Dec;12(4):245–258. doi: 10.1002/glia.440120402. [DOI] [PubMed] [Google Scholar]
  287. Simmons M. L., Murphy S. Induction of nitric oxide synthase in glial cells. J Neurochem. 1992 Sep;59(3):897–905. doi: 10.1111/j.1471-4159.1992.tb08328.x. [DOI] [PubMed] [Google Scholar]
  288. Simmons M. L., Murphy S. Roles for protein kinases in the induction of nitric oxide synthase in astrocytes. Glia. 1994 Jul;11(3):227–234. doi: 10.1002/glia.440110303. [DOI] [PubMed] [Google Scholar]
  289. Simonian N. A., Coyle J. T. Oxidative stress in neurodegenerative diseases. Annu Rev Pharmacol Toxicol. 1996;36:83–106. doi: 10.1146/annurev.pa.36.040196.000503. [DOI] [PubMed] [Google Scholar]
  290. Sippy B. D., Hofman F. M., Wallach D., Hinton D. R. Increased expression of tumor necrosis factor-alpha receptors in the brains of patients with AIDS. J Acquir Immune Defic Syndr Hum Retrovirol. 1995 Dec 15;10(5):511–521. [PubMed] [Google Scholar]
  291. Skaper S. D., Facci L., Leon A. Inflammatory mediator stimulation of astrocytes and meningeal fibroblasts induces neuronal degeneration via the nitridergic pathway. J Neurochem. 1995 Jan;64(1):266–276. doi: 10.1046/j.1471-4159.1995.64010266.x. [DOI] [PubMed] [Google Scholar]
  292. Snyder S. H. Nitric oxide: first in a new class of neurotransmitters. Science. 1992 Jul 24;257(5069):494–496. doi: 10.1126/science.1353273. [DOI] [PubMed] [Google Scholar]
  293. Somjen G. G. Nervenkitt: notes on the history of the concept of neuroglia. Glia. 1988;1(1):2–9. doi: 10.1002/glia.440010103. [DOI] [PubMed] [Google Scholar]
  294. Southan G. J., Szabó C. Selective pharmacological inhibition of distinct nitric oxide synthase isoforms. Biochem Pharmacol. 1996 Feb 23;51(4):383–394. doi: 10.1016/0006-2952(95)02099-3. [DOI] [PubMed] [Google Scholar]
  295. Spranger Matthias, Lindholm Dan, Bandtlow Christine, Heumann Rolf, Gnahn Hannes, Näher-Noé Martina, Thoenen Hans. Regulation of Nerve Growth Factor (NGF) Synthesis in the Rat Central Nervous System: Comparison between the Effects of Interleukin-1 and Various Growth Factors in Astrocyte Cultures and in vivo. Eur J Neurosci. 1990 Jan;2(1):69–76. doi: 10.1111/j.1460-9568.1990.tb00382.x. [DOI] [PubMed] [Google Scholar]
  296. Sprengers E. D., Kluft C. Plasminogen activator inhibitors. Blood. 1987 Feb;69(2):381–387. [PubMed] [Google Scholar]
  297. Stoll G., Trapp B. D., Griffin J. W. Macrophage function during Wallerian degeneration of rat optic nerve: clearance of degenerating myelin and Ia expression. J Neurosci. 1989 Jul;9(7):2327–2335. doi: 10.1523/JNEUROSCI.09-07-02327.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  298. Streit W. J., Graeber M. B., Kreutzberg G. W. Functional plasticity of microglia: a review. Glia. 1988;1(5):301–307. doi: 10.1002/glia.440010502. [DOI] [PubMed] [Google Scholar]
  299. Streit W. J. Microglial-neuronal interactions. J Chem Neuroanat. 1993 Jul-Aug;6(4):261–266. doi: 10.1016/0891-0618(93)90047-8. [DOI] [PubMed] [Google Scholar]
  300. Strijbos P. J., Rothwell N. J. Interleukin-1 beta attenuates excitatory amino acid-induced neurodegeneration in vitro: involvement of nerve growth factor. J Neurosci. 1995 May;15(5 Pt 1):3468–3474. doi: 10.1523/JNEUROSCI.15-05-03468.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  301. Stuehr D. J., Nathan C. F. Nitric oxide. A macrophage product responsible for cytostasis and respiratory inhibition in tumor target cells. J Exp Med. 1989 May 1;169(5):1543–1555. doi: 10.1084/jem.169.5.1543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  302. Suzumura A., Marunouchi T., Yamamoto H. Morphological transformation of microglia in vitro. Brain Res. 1991 Apr 5;545(1-2):301–306. doi: 10.1016/0006-8993(91)91302-h. [DOI] [PubMed] [Google Scholar]
  303. Suzumura A., Mezitis S. G., Gonatas N. K., Silberberg D. H. MHC antigen expression on bulk isolated macrophage-microglia from newborn mouse brain: induction of Ia antigen expression by gamma-interferon. J Neuroimmunol. 1987 Jul-Aug;15(3):263–278. doi: 10.1016/0165-5728(87)90121-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  304. Swanson R. A., Choi D. W. Glial glycogen stores affect neuronal survival during glucose deprivation in vitro. J Cereb Blood Flow Metab. 1993 Jan;13(1):162–169. doi: 10.1038/jcbfm.1993.19. [DOI] [PubMed] [Google Scholar]
  305. Sébire G., Emilie D., Wallon C., Héry C., Devergne O., Delfraissy J. F., Galanaud P., Tardieu M. In vitro production of IL-6, IL-1 beta, and tumor necrosis factor-alpha by human embryonic microglial and neural cells. J Immunol. 1993 Feb 15;150(4):1517–1523. [PubMed] [Google Scholar]
  306. Tanaka J., Maeda N. Microglial ramification requires nondiffusible factors derived from astrocytes. Exp Neurol. 1996 Feb;137(2):367–375. doi: 10.1006/exnr.1996.0038. [DOI] [PubMed] [Google Scholar]
  307. Thiele D. L., Kurosaka M., Lipsky P. E. Phenotype of the accessory cell necessary for mitogen-stimulated T and B cell responses in human peripheral blood: delineation by its sensitivity to the lysosomotropic agent, L-leucine methyl ester. J Immunol. 1983 Nov;131(5):2282–2290. [PubMed] [Google Scholar]
  308. Théry C., Stanley E. R., Mallat M. Interleukin 1 and tumor necrosis factor-alpha stimulate the production of colony-stimulating factor 1 by murine astrocytes. J Neurochem. 1992 Sep;59(3):1183–1186. doi: 10.1111/j.1471-4159.1992.tb08366.x. [DOI] [PubMed] [Google Scholar]
  309. Théry Clotilde, Chamak Brigitte, Mallat Michel. Cytotoxic Effect of Brain Macrophages on Developing Neurons. Eur J Neurosci. 1991 Oct;3(11):1155–1164. doi: 10.1111/j.1460-9568.1991.tb00050.x. [DOI] [PubMed] [Google Scholar]
  310. Théry Clotilde, Chamak Brigitte, Mallat Michel. Cytotoxic Effect of Brain Macrophages on Developing Neurons. Eur J Neurosci. 1991 Oct;3(11):1155–1164. doi: 10.1111/j.1460-9568.1991.tb00050.x. [DOI] [PubMed] [Google Scholar]
  311. Ting J. P., Nixon D. F., Weiner L. P., Frelinger J. A. Brain Ia antigens have a bone marrow origin. Immunogenetics. 1983;17(3):295–301. doi: 10.1007/BF00364413. [DOI] [PubMed] [Google Scholar]
  312. Tooyama I., Kimura H., Akiyama H., McGeer P. L. Reactive microglia express class I and class II major histocompatibility complex antigens in Alzheimer's disease. Brain Res. 1990 Jul 23;523(2):273–280. doi: 10.1016/0006-8993(90)91496-4. [DOI] [PubMed] [Google Scholar]
  313. Toshniwal P. K., Firestone S. L., Barlow G. H., Tiku M. L. Characterization of astrocyte plasminogen activator. J Neurol Sci. 1987 Sep;80(2-3):277–287. doi: 10.1016/0022-510x(87)90162-6. [DOI] [PubMed] [Google Scholar]
  314. Tsirka S. E., Rogove A. D., Strickland S. Neuronal cell death and tPA. Nature. 1996 Nov 14;384(6605):123–124. doi: 10.1038/384123b0. [DOI] [PubMed] [Google Scholar]
  315. Tzeng T. B., Fung H. L. Pharmacodynamic modeling of the in vitro vasodilating effects of organic mononitrates. J Pharmacokinet Biopharm. 1992 Jun;20(3):227–251. doi: 10.1007/BF01062526. [DOI] [PubMed] [Google Scholar]
  316. Vaca K., Wendt E. Divergent effects of astroglial and microglial secretions on neuron growth and survival. Exp Neurol. 1992 Oct;118(1):62–72. doi: 10.1016/0014-4886(92)90023-j. [DOI] [PubMed] [Google Scholar]
  317. Van Dam A. M., Bauer J., Man-A-Hing W. K., Marquette C., Tilders F. J., Berkenbosch F. Appearance of inducible nitric oxide synthase in the rat central nervous system after rabies virus infection and during experimental allergic encephalomyelitis but not after peripheral administration of endotoxin. J Neurosci Res. 1995 Feb 1;40(2):251–260. doi: 10.1002/jnr.490400214. [DOI] [PubMed] [Google Scholar]
  318. Van Muiswinkel F. L., Veerhuis R., Eikelenboom P. Amyloid beta protein primes cultured rat microglial cells for an enhanced phorbol 12-myristate 13-acetate-induced respiratory burst activity. J Neurochem. 1996 Jun;66(6):2468–2476. doi: 10.1046/j.1471-4159.1996.66062468.x. [DOI] [PubMed] [Google Scholar]
  319. Vassalli J. D., Sappino A. P., Belin D. The plasminogen activator/plasmin system. J Clin Invest. 1991 Oct;88(4):1067–1072. doi: 10.1172/JCI115405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  320. Vazeux R., Brousse N., Jarry A., Henin D., Marche C., Vedrenne C., Mikol J., Wolff M., Michon C., Rozenbaum W. AIDS subacute encephalitis. Identification of HIV-infected cells. Am J Pathol. 1987 Mar;126(3):403–410. [PMC free article] [PubMed] [Google Scholar]
  321. Verheijen J. H., Chang G. T., Kluft C. Evidence for the occurrence of a fast-acting inhibitor for tissue-type plasminogen activator in human plasma. Thromb Haemost. 1984 Jul 29;51(3):392–395. [PubMed] [Google Scholar]
  322. Vincent V. A., Löwik C. W., Verheijen J. H., de Bart A. C., Tilders F. J., Van Dam A. M. Role of astrocyte-derived tissue-type plasminogen activator in the regulation of endotoxin-stimulated nitric oxide production by microglial cells. Glia. 1998 Feb;22(2):130–137. [PubMed] [Google Scholar]
  323. Vincent V. A., Tilders F. J., Van Dam A. M. Inhibition of endotoxin-induced nitric oxide synthase production in microglial cells by the presence of astroglial cells: a role for transforming growth factor beta. Glia. 1997 Mar;19(3):190–198. doi: 10.1002/(sici)1098-1136(199703)19:3<190::aid-glia2>3.0.co;2-3. [DOI] [PubMed] [Google Scholar]
  324. Vincent V. A., Van Dam A. M., Persoons J. H., Schotanus K., Steinbusch H. W., Schoffelmeer A. N., Berkenbosch F. Gradual inhibition of inducible nitric oxide synthase but not of interleukin-1 beta production in rat microglial cells of endotoxin-treated mixed glial cell cultures. Glia. 1996 Jun;17(2):94–102. doi: 10.1002/(SICI)1098-1136(199606)17:2<94::AID-GLIA2>3.0.CO;2-6. [DOI] [PubMed] [Google Scholar]
  325. Vodovotz Y., Lucia M. S., Flanders K. C., Chesler L., Xie Q. W., Smith T. W., Weidner J., Mumford R., Webber R., Nathan C. Inducible nitric oxide synthase in tangle-bearing neurons of patients with Alzheimer's disease. J Exp Med. 1996 Oct 1;184(4):1425–1433. doi: 10.1084/jem.184.4.1425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  326. Wahl S. M., Allen J. B., McCartney-Francis N., Morganti-Kossmann M. C., Kossmann T., Ellingsworth L., Mai U. E., Mergenhagen S. E., Orenstein J. M. Macrophage- and astrocyte-derived transforming growth factor beta as a mediator of central nervous system dysfunction in acquired immune deficiency syndrome. J Exp Med. 1991 Apr 1;173(4):981–991. doi: 10.1084/jem.173.4.981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  327. Wahl S. M., Hunt D. A., Wakefield L. M., McCartney-Francis N., Wahl L. M., Roberts A. B., Sporn M. B. Transforming growth factor type beta induces monocyte chemotaxis and growth factor production. Proc Natl Acad Sci U S A. 1987 Aug;84(16):5788–5792. doi: 10.1073/pnas.84.16.5788. [DOI] [PMC free article] [PubMed] [Google Scholar]
  328. Wallace M. N., Fredens K. Activated astrocytes of the mouse hippocampus contain high levels of NADPH-diaphorase. Neuroreport. 1992 Nov;3(11):953–956. doi: 10.1097/00001756-199211000-00001. [DOI] [PubMed] [Google Scholar]
  329. Wiley C. A., Achim C. L., Schrier R. D., Heyes M. P., McCutchan J. A., Grant I. Relationship of cerebrospinal fluid immune activation associated factors to HIV encephalitis. AIDS. 1992 Nov;6(11):1299–1307. doi: 10.1097/00002030-199211000-00010. [DOI] [PubMed] [Google Scholar]
  330. Williams K., Dooley N., Ulvestad E., Becher B., Antel J. P. IL-10 production by adult human derived microglial cells. Neurochem Int. 1996 Jul;29(1):55–64. doi: 10.1016/0197-0186(95)00138-7. [DOI] [PubMed] [Google Scholar]
  331. Woodroofe M. N., Bellamy A. S., Feldmann M., Davison A. N., Cuzner M. L. Immunocytochemical characterisation of the immune reaction in the central nervous system in multiple sclerosis. Possible role for microglia in lesion growth. J Neurol Sci. 1986 Jul;74(2-3):135–152. doi: 10.1016/0022-510x(86)90100-0. [DOI] [PubMed] [Google Scholar]
  332. Wun T. C., Reich E. An inhibitor of plasminogen activation from human placenta. Purification and characterization. J Biol Chem. 1987 Mar 15;262(8):3646–3653. [PubMed] [Google Scholar]
  333. Yamada N., Kato M., Yamashita H., Nistér M., Miyazono K., Heldin C. H., Funa K. Enhanced expression of transforming growth factor-beta and its type-I and type-II receptors in human glioblastoma. Int J Cancer. 1995 Aug 9;62(4):386–392. doi: 10.1002/ijc.2910620405. [DOI] [PubMed] [Google Scholar]
  334. Yao J., Harvath L., Gilbert D. L., Colton C. A. Chemotaxis by a CNS macrophage, the microglia. J Neurosci Res. 1990 Sep;27(1):36–42. doi: 10.1002/jnr.490270106. [DOI] [PubMed] [Google Scholar]
  335. Yao J., Keri J. E., Taffs R. E., Colton C. A. Characterization of interleukin-1 production by microglia in culture. Brain Res. 1992 Sep 18;591(1):88–93. doi: 10.1016/0006-8993(92)90981-e. [DOI] [PubMed] [Google Scholar]
  336. Yee J. A., Yan L., Dominguez J. C., Allan E. H., Martin T. J. Plasminogen-dependent activation of latent transforming growth factor beta (TGF beta) by growing cultures of osteoblast-like cells. J Cell Physiol. 1993 Dec;157(3):528–534. doi: 10.1002/jcp.1041570312. [DOI] [PubMed] [Google Scholar]
  337. Yeung M. C., Pulliam L., Lau A. S. The HIV envelope protein gp120 is toxic to human brain-cell cultures through the induction of interleukin-6 and tumor necrosis factor-alpha. AIDS. 1995 Feb;9(2):137–143. [PubMed] [Google Scholar]
  338. Yoshida K., Gage F. H. Cooperative regulation of nerve growth factor synthesis and secretion in fibroblasts and astrocytes by fibroblast growth factor and other cytokines. Brain Res. 1992 Jan 8;569(1):14–25. doi: 10.1016/0006-8993(92)90364-f. [DOI] [PubMed] [Google Scholar]
  339. Yoshida K., Kakihana M., Chen L. S., Ong M., Baird A., Gage F. H. Cytokine regulation of nerve growth factor-mediated cholinergic neurotrophic activity synthesized by astrocytes and fibroblasts. J Neurochem. 1992 Sep;59(3):919–931. doi: 10.1111/j.1471-4159.1992.tb08331.x. [DOI] [PubMed] [Google Scholar]
  340. Yoshioka M., Bradley W. G., Shapshak P., Nagano I., Stewart R. V., Xin K. Q., Srivastava A. K., Nakamura S. Role of immune activation and cytokine expression in HIV-1-associated neurologic diseases. Adv Neuroimmunol. 1995;5(3):335–358. doi: 10.1016/0960-5428(95)00012-q. [DOI] [PubMed] [Google Scholar]
  341. Young M. R., Farietta T., Crayton J. W. Production of nitric oxide and transforming growth factor-beta in developing and adult rat brain. Mech Ageing Dev. 1995 Apr 14;79(2-3):115–126. doi: 10.1016/0047-6374(94)01545-w. [DOI] [PubMed] [Google Scholar]
  342. Zhang J., Dawson V. L., Dawson T. M., Snyder S. H. Nitric oxide activation of poly(ADP-ribose) synthetase in neurotoxicity. Science. 1994 Feb 4;263(5147):687–689. doi: 10.1126/science.8080500. [DOI] [PubMed] [Google Scholar]
  343. Zhang J., Snyder S. H. Nitric oxide in the nervous system. Annu Rev Pharmacol Toxicol. 1995;35:213–233. doi: 10.1146/annurev.pa.35.040195.001241. [DOI] [PubMed] [Google Scholar]
  344. Zhang X., Morrison D. C. Lipopolysaccharide-induced selective priming effects on tumor necrosis factor alpha and nitric oxide production in mouse peritoneal macrophages. J Exp Med. 1993 Feb 1;177(2):511–516. doi: 10.1084/jem.177.2.511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  345. Zhao W., Tilton R. G., Corbett J. A., McDaniel M. L., Misko T. P., Williamson J. R., Cross A. H., Hickey W. F. Experimental allergic encephalomyelitis in the rat is inhibited by aminoguanidine, an inhibitor of nitric oxide synthase. J Neuroimmunol. 1996 Feb;64(2):123–133. doi: 10.1016/0165-5728(95)00158-1. [DOI] [PubMed] [Google Scholar]
  346. Zheng Y. M., Schäfer M. K., Weihe E., Sheng H., Corisdeo S., Fu Z. F., Koprowski H., Dietzschold B. Severity of neurological signs and degree of inflammatory lesions in the brains of rats with Borna disease correlate with the induction of nitric oxide synthase. J Virol. 1993 Oct;67(10):5786–5791. doi: 10.1128/jvi.67.10.5786-5791.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  347. da Cunha A., Jackson R. W., Vitković L. HIV-1 non-specifically stimulates production of transforming growth factor-beta 1 transfer in primary astrocytes. J Neuroimmunol. 1995 Jul;60(1-2):125–133. doi: 10.1016/0165-5728(95)00062-7. [DOI] [PubMed] [Google Scholar]
  348. da Cunha A., Vitković L. Transforming growth factor-beta 1 (TGF-beta 1) expression and regulation in rat cortical astrocytes. J Neuroimmunol. 1992 Feb;36(2-3):157–169. doi: 10.1016/0165-5728(92)90047-o. [DOI] [PubMed] [Google Scholar]
  349. de Groot C. J., Huppes W., Sminia T., Kraal G., Dijkstra C. D. Determination of the origin and nature of brain macrophages and microglial cells in mouse central nervous system, using non-radioactive in situ hybridization and immunoperoxidase techniques. Glia. 1992;6(4):301–309. doi: 10.1002/glia.440060408. [DOI] [PubMed] [Google Scholar]

Articles from Mediators of Inflammation are provided here courtesy of Wiley

RESOURCES