Skip to main content
Mediators of Inflammation logoLink to Mediators of Inflammation
. 1998;7(6):397–407. doi: 10.1080/09629359890776

Transient degradation of NF-kappaB proteins in macrophages after interaction with mast cell granules.

N Ito 1, Y Li 1, T Suzuki 1, D J Stechschulte 1, K N Dileepan 1
PMCID: PMC1781875  PMID: 9927232

Abstract

The exposure of the macrophage cell line, J774 to mast cell granules (MCG) led to the formation of altered nuclear transcription factor proteins (NF-kappaBx), which had faster electrophoretic mobility than the p50 homodimer of NF-KB, but retained comparable DNA binding capacity. Antibodies to N-terminal peptides of p50, p52, p65 or c-Rel supershifted only a fraction of NF-kappaBx. Western blot analyses revealed that nuclear p65 and c-Rel were progressively degraded after exposure to MCG, whereas nuclear p50 appeared to be unaffected. In contrast, cytoplasmic p50, p65, c-Rel as well as IkBalpha remained intact after MCG treatment, although p52 was clearly degraded. In comparison to J774 cells, incubation of mouse peritoneal macrophages with MCG resulted in more extensive alterations to NF-KB proteins. The alterations in NF-KB proteins did not affect the expression of inducible nitric oxide synthase (iNOS) or TNF-alpha mRNA inJ774 cells. These data indicate that exposure of J774 cells to MCG leads to generation of altered nuclear p52, p65 and c-Rel, which retain intact N-terminal peptides, specific oligonucleotide binding and transactivating activity. On the other hand, in peritoneal macrophages, MCG induce more extensive modifications to NF-KB proteins with associated inhibition of iNOS or TNF-alpha mRNA expression.

Full Text

The Full Text of this article is available as a PDF (612.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams D. O., Hamilton T. A. The cell biology of macrophage activation. Annu Rev Immunol. 1984;2:283–318. doi: 10.1146/annurev.iy.02.040184.001435. [DOI] [PubMed] [Google Scholar]
  2. Cairns J. A., Walls A. F. Mast cell tryptase is a mitogen for epithelial cells. Stimulation of IL-8 production and intercellular adhesion molecule-1 expression. J Immunol. 1996 Jan 1;156(1):275–283. [PubMed] [Google Scholar]
  3. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  4. Dignam J. D., Lebovitz R. M., Roeder R. G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 1983 Mar 11;11(5):1475–1489. doi: 10.1093/nar/11.5.1475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dileepan K. N., Lorsbach R. B., Stechschulte D. J. Mast cell granules inhibit macrophage-mediated lysis of mastocytoma cells (P815) and nitric oxide production. J Leukoc Biol. 1993 Apr;53(4):446–453. doi: 10.1002/jlb.53.4.446. [DOI] [PubMed] [Google Scholar]
  6. Dileepan K. N., Simpson K. M., Stechschulte D. J. Modulation of macrophage superoxide-induced cytochrome c reduction by mast cells. J Lab Clin Med. 1989 May;113(5):577–585. [PubMed] [Google Scholar]
  7. ERLANGER B. F., KOKOWSKY N., COHEN W. The preparation and properties of two new chromogenic substrates of trypsin. Arch Biochem Biophys. 1961 Nov;95:271–278. doi: 10.1016/0003-9861(61)90145-x. [DOI] [PubMed] [Google Scholar]
  8. Fujihara M., Muroi M., Muroi Y., Ito N., Suzuki T. Mechanism of lipopolysaccharide-triggered junB activation in a mouse macrophage-like cell line (J774). J Biol Chem. 1993 Jul 15;268(20):14898–14905. [PubMed] [Google Scholar]
  9. Gordon J. R., Burd P. R., Galli S. J. Mast cells as a source of multifunctional cytokines. Immunol Today. 1990 Dec;11(12):458–464. doi: 10.1016/0167-5699(90)90176-a. [DOI] [PubMed] [Google Scholar]
  10. Gruber B. L., Kew R. R., Jelaska A., Marchese M. J., Garlick J., Ren S., Schwartz L. B., Korn J. H. Human mast cells activate fibroblasts: tryptase is a fibrogenic factor stimulating collagen messenger ribonucleic acid synthesis and fibroblast chemotaxis. J Immunol. 1997 Mar 1;158(5):2310–2317. [PubMed] [Google Scholar]
  11. Ishizaka T., Ishizaka K. Activation of mast cells for mediator release through IgE receptors. Prog Allergy. 1984;34:188–235. [PubMed] [Google Scholar]
  12. Kokkonen J. O., Vartiainen M., Kovanen P. T. Low density lipoprotein degradation by secretory granules of rat mast cells. Sequential degradation of apolipoprotein B by granule chymase and carboxypeptidase A. J Biol Chem. 1986 Dec 5;261(34):16067–16072. [PubMed] [Google Scholar]
  13. Lew D. J., Decker T., Strehlow I., Darnell J. E. Overlapping elements in the guanylate-binding protein gene promoter mediate transcriptional induction by alpha and gamma interferons. Mol Cell Biol. 1991 Jan;11(1):182–191. doi: 10.1128/mcb.11.1.182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Li Y., Stechschulte A. C., Smith D. D., Lindsley H. B., Stechschulte D. J., Dileepan K. N. Mast cell granules potentiate endotoxin-induced interleukin-6 production by endothelial cells. J Leukoc Biol. 1997 Aug;62(2):211–216. [PubMed] [Google Scholar]
  15. Mirochnitchenko O., Inouye M. Effect of overexpression of human Cu,Zn superoxide dismutase in transgenic mice on macrophage functions. J Immunol. 1996 Feb 15;156(4):1578–1586. [PubMed] [Google Scholar]
  16. Muroi M., Muroi Y., Suzuki T. The binding of immobilized IgG2a to Fc gamma 2a receptor activates NF-kappa B via reactive oxygen intermediates and tumor necrosis factor-alpha 1. J Biol Chem. 1994 Dec 2;269(48):30561–30568. [PubMed] [Google Scholar]
  17. Muroi M., Muroi Y., Yamamoto K., Suzuki T. Influence of 3' half-site sequence of NF-kappa B motifs on the binding of lipopolysaccharide-activatable macrophage NF-kappa B proteins. J Biol Chem. 1993 Sep 15;268(26):19534–19539. [PubMed] [Google Scholar]
  18. Muroi M., Suzuki T. Role of protein kinase A in LPS-induced activation of NF-kappa B proteins of a mouse macrophage-like cell line, J774. Cell Signal. 1993 May;5(3):289–298. doi: 10.1016/0898-6568(93)90019-i. [DOI] [PubMed] [Google Scholar]
  19. Ralph P., Prichard J., Cohn M. Reticulum cell sarcoma: an effector cell in antibody-dependent cell-mediated immunity. J Immunol. 1975 Feb;114(2 Pt 2):898–905. [PubMed] [Google Scholar]
  20. Rice N. R., Ernst M. K. In vivo control of NF-kappa B activation by I kappa B alpha. EMBO J. 1993 Dec;12(12):4685–4695. doi: 10.1002/j.1460-2075.1993.tb06157.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Schwartz L. B., Austen K. F. Structure and function of the chemical mediators of mast cells. Prog Allergy. 1984;34:271–321. [PubMed] [Google Scholar]
  22. Schwartz L. B., Irani A. M., Roller K., Castells M. C., Schechter N. M. Quantitation of histamine, tryptase, and chymase in dispersed human T and TC mast cells. J Immunol. 1987 Apr 15;138(8):2611–2615. [PubMed] [Google Scholar]
  23. Welle M. Development, significance, and heterogeneity of mast cells with particular regard to the mast cell-specific proteases chymase and tryptase. J Leukoc Biol. 1997 Mar;61(3):233–245. doi: 10.1002/jlb.61.3.233. [DOI] [PubMed] [Google Scholar]
  24. Wershil B. K., Murakami T., Galli S. J. Mast cell-dependent amplification of an immunologically nonspecific inflammatory response. Mast cells are required for the full expression of cutaneous acute inflammation induced by phorbol 12-myristate 13-acetate. J Immunol. 1988 Apr 1;140(7):2356–2360. [PubMed] [Google Scholar]
  25. Woodbury R. G., Everitt M. T., Neurath H. Mast cell proteases. Methods Enzymol. 1981;80(Pt 100):588–609. doi: 10.1016/s0076-6879(81)80047-x. [DOI] [PubMed] [Google Scholar]
  26. Xie Q. W., Kashiwabara Y., Nathan C. Role of transcription factor NF-kappa B/Rel in induction of nitric oxide synthase. J Biol Chem. 1994 Feb 18;269(7):4705–4708. [PubMed] [Google Scholar]
  27. Yamada A., Dileepan K. N., Stechschulte D. J., Suzuki T. Regulation of Fc gamma 2a receptor-mediated phagocytosis by a murine macrophage-like cell line, P388D1: involvement of casein kinase II activity associated with Fc gamma 2a receptor. J Mol Cell Immunol. 1989;4(4):191–201. [PubMed] [Google Scholar]
  28. Zhong H., SuYang H., Erdjument-Bromage H., Tempst P., Ghosh S. The transcriptional activity of NF-kappaB is regulated by the IkappaB-associated PKAc subunit through a cyclic AMP-independent mechanism. Cell. 1997 May 2;89(3):413–424. doi: 10.1016/s0092-8674(00)80222-6. [DOI] [PubMed] [Google Scholar]

Articles from Mediators of Inflammation are provided here courtesy of Wiley

RESOURCES