Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Aug;178(15):4461–4471. doi: 10.1128/jb.178.15.4461-4471.1996

An alternative pathway of recombination of chromosomal fragments precedes recA-dependent recombination in the radioresistant bacterium Deinococcus radiodurans.

M J Daly 1, K W Minton 1
PMCID: PMC178212  PMID: 8755873

Abstract

Deinococcus radiodurans R1 and other members of this genus are able to repair and survive extreme DNA damage induced by ionizing radiation and many other DNA-damaging agents. The ability of R1 to repair completely > 100 double-strand breaks in its chromosome without lethality or mutagenesis is recA dependent. However, during the first 1.5 h after irradiation, recA+ and recA cells show similar increases in the average size of chromosomal fragments. In recA+ cells, DNA continues to enlarge to wild-type size within 29 h. However, in recA cells, no DNA repair is observed following the first 1.5 h postirradiation. This recA-independent effect was studied further, using two slightly different Escherichia coli plasmids forming adjacent duplication insertions in the chromosome, providing repetitive sequences suitable for circularization by non-recA-dependent pathways following irradiation. After exposure to 1.75 Mrad (17,500 Gy), circular derivatives of the integration units were detected in both recA+ and recA cells. These DNA circles were formed in the first 1.5 h postirradiation, several hours before the onset of detectable recA-dependent homologous recombination. By comparison, D. radiodurans strains containing the same E. coli plasmids as nonrepetitive direct insertions did not form circular derivatives of the integration units before or after irradiation in recA+ or recA cells. The circular derivatives of the tandemly integrated plasmids were formed before the onset of recA-dependent repair and have structures consistent with the hypothesis that DNA repair occurring immediately postirradiation is by a recA-independent single-strand annealing reaction and may be a preparatory step for further DNA repair in wild-type D. radiodurans.

Full Text

The Full Text of this article is available as a PDF (571.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bridges B. A. Are there DNA damage checkpoints in E. coli? Bioessays. 1995 Jan;17(1):63–70. doi: 10.1002/bies.950170112. [DOI] [PubMed] [Google Scholar]
  2. Brosius J. Plasmid vectors for the selection of promoters. Gene. 1984 Feb;27(2):151–160. doi: 10.1016/0378-1119(84)90136-7. [DOI] [PubMed] [Google Scholar]
  3. Carroll J. D., Daly M. J., Minton K. W. Expression of recA in Deinococcus radiodurans. J Bacteriol. 1996 Jan;178(1):130–135. doi: 10.1128/jb.178.1.130-135.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Daly M. J., Ling O., Minton K. W. Interplasmidic recombination following irradiation of the radioresistant bacterium Deinococcus radiodurans. J Bacteriol. 1994 Dec;176(24):7506–7515. doi: 10.1128/jb.176.24.7506-7515.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Daly M. J., Minton K. W. Interchromosomal recombination in the extremely radioresistant bacterium Deinococcus radiodurans. J Bacteriol. 1995 Oct;177(19):5495–5505. doi: 10.1128/jb.177.19.5495-5505.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Daly M. J., Minton K. W. Resistance to radiation. Science. 1995 Nov 24;270(5240):1318–1318. doi: 10.1126/science.270.5240.1318. [DOI] [PubMed] [Google Scholar]
  7. Daly M. J., Ouyang L., Fuchs P., Minton K. W. In vivo damage and recA-dependent repair of plasmid and chromosomal DNA in the radiation-resistant bacterium Deinococcus radiodurans. J Bacteriol. 1994 Jun;176(12):3508–3517. doi: 10.1128/jb.176.12.3508-3517.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Doherty M. J., Morrison P. T., Kolodner R. Genetic recombination of bacterial plasmid DNA. Physical and genetic analysis of the products of plasmid recombination in Escherichia coli. J Mol Biol. 1983 Jul 5;167(3):539–560. doi: 10.1016/s0022-2836(83)80097-7. [DOI] [PubMed] [Google Scholar]
  9. Fishman-Lobell J., Haber J. E. Removal of nonhomologous DNA ends in double-strand break recombination: the role of the yeast ultraviolet repair gene RAD1. Science. 1992 Oct 16;258(5081):480–484. doi: 10.1126/science.1411547. [DOI] [PubMed] [Google Scholar]
  10. Gutman P. D., Carroll J. D., Masters C. I., Minton K. W. Sequencing, targeted mutagenesis and expression of a recA gene required for the extreme radioresistance of Deinococcus radiodurans. Gene. 1994 Apr 8;141(1):31–37. doi: 10.1016/0378-1119(94)90124-4. [DOI] [PubMed] [Google Scholar]
  11. Gutman P. D., Fuchs P., Minton K. W. Restoration of the DNA damage resistance of Deinococcus radiodurans DNA polymerase mutants by Escherichia coli DNA polymerase I and Klenow fragment. Mutat Res. 1994 Jan;314(1):87–97. doi: 10.1016/0921-8777(94)90064-7. [DOI] [PubMed] [Google Scholar]
  12. Gutman P. D., Yao H. L., Minton K. W. Partial complementation of the UV sensitivity of Deinococcus radiodurans excision repair mutants by the cloned denV gene of bacteriophage T4. Mutat Res. 1991 May;254(3):207–215. doi: 10.1016/0921-8777(91)90058-w. [DOI] [PubMed] [Google Scholar]
  13. Haber J. E. Exploring the pathways of homologous recombination. Curr Opin Cell Biol. 1992 Jun;4(3):401–412. doi: 10.1016/0955-0674(92)90005-w. [DOI] [PubMed] [Google Scholar]
  14. Hansen M. T. Multiplicity of genome equivalents in the radiation-resistant bacterium Micrococcus radiodurans. J Bacteriol. 1978 Apr;134(1):71–75. doi: 10.1128/jb.134.1.71-75.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lennon E., Minton K. W. Gene fusions with lacZ by duplication insertion in the radioresistant bacterium Deinococcus radiodurans. J Bacteriol. 1990 Jun;172(6):2955–2961. doi: 10.1128/jb.172.6.2955-2961.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Masters C. I., Minton K. W. Promoter probe and shuttle plasmids for Deinococcus radiodurans. Plasmid. 1992 Nov;28(3):258–261. doi: 10.1016/0147-619x(92)90057-h. [DOI] [PubMed] [Google Scholar]
  17. Masters C. I., Smith M. D., Gutman P. D., Minton K. W. Heterozygosity and instability of amplified chromosomal insertions in the radioresistant bacterium Deinococcus radiodurans. J Bacteriol. 1991 Oct;173(19):6110–6117. doi: 10.1128/jb.173.19.6110-6117.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Minton K. W. DNA repair in the extremely radioresistant bacterium Deinococcus radiodurans. Mol Microbiol. 1994 Jul;13(1):9–15. doi: 10.1111/j.1365-2958.1994.tb00397.x. [DOI] [PubMed] [Google Scholar]
  19. Minton K. W., Daly M. J. A model for repair of radiation-induced DNA double-strand breaks in the extreme radiophile Deinococcus radiodurans. Bioessays. 1995 May;17(5):457–464. doi: 10.1002/bies.950170514. [DOI] [PubMed] [Google Scholar]
  20. Moseley B. E., Copland H. J. Isolation and properties of a recombination-deficient mutant of Micrococcus radiodurans. J Bacteriol. 1975 Feb;121(2):422–428. doi: 10.1128/jb.121.2.422-428.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mun C., Del Rowe J., Sandigursky M., Minton K. W., Franklin W. A. DNA deoxyribophosphodiesterase and an activity that cleaves DNA containing thymine glycol adducts in Deinococcus radiodurans. Radiat Res. 1994 May;138(2):282–285. [PubMed] [Google Scholar]
  22. Pyle L. E., Corcoran L. N., Cocks B. G., Bergemann A. D., Whitley J. C., Finch L. R. Pulsed-field electrophoresis indicates larger-than-expected sizes for mycoplasma genomes. Nucleic Acids Res. 1988 Jul 11;16(13):6015–6025. doi: 10.1093/nar/16.13.6015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Resnick M. A. Similar responses to ionizing radiation of fungal and vertebrate cells and the importance of DNA doublestrand breaks. J Theor Biol. 1978 Apr 6;71(3):339–346. doi: 10.1016/0022-5193(78)90164-9. [DOI] [PubMed] [Google Scholar]
  24. Silberstein Z., Shalit M., Cohen A. Heteroduplex strand-specificity in restriction-stimulated recombination by the RecE pathway of Escherichia coli. Genetics. 1993 Mar;133(3):439–448. doi: 10.1093/genetics/133.3.439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Silberstein Z., Tzfati Y., Cohen A. Primary products of break-induced recombination by Escherichia coli RecE pathway. J Bacteriol. 1995 Apr;177(7):1692–1698. doi: 10.1128/jb.177.7.1692-1698.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Smith M. D., Abrahamson R., Minton K. W. Shuttle plasmids constructed by the transformation of an Escherichia coli cloning vector into two Deinococcus radiodurans plasmids. Plasmid. 1989 Sep;22(2):132–142. doi: 10.1016/0147-619x(89)90022-x. [DOI] [PubMed] [Google Scholar]
  27. Smith M. D., Lennon E., McNeil L. B., Minton K. W. Duplication insertion of drug resistance determinants in the radioresistant bacterium Deinococcus radiodurans. J Bacteriol. 1988 May;170(5):2126–2135. doi: 10.1128/jb.170.5.2126-2135.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Smith M. D., Masters C. I., Lennon E., McNeil L. B., Minton K. W. Gene expression in Deinococcus radiodurans. Gene. 1991 Feb 1;98(1):45–52. doi: 10.1016/0378-1119(91)90102-h. [DOI] [PubMed] [Google Scholar]
  29. Sweet D. M., Moseley B. E. The resistance of Micrococcus radiodurans to killing and mutation by agents which damage DNA. Mutat Res. 1976 Feb;34(2):175–186. doi: 10.1016/0027-5107(76)90122-6. [DOI] [PubMed] [Google Scholar]
  30. Szostak J. W., Orr-Weaver T. L., Rothstein R. J., Stahl F. W. The double-strand-break repair model for recombination. Cell. 1983 May;33(1):25–35. doi: 10.1016/0092-8674(83)90331-8. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES