Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Aug;178(15):4530–4539. doi: 10.1128/jb.178.15.4530-4539.1996

Temperature-dependent growth kinetics of Escherichia coli ML 30 in glucose-limited continuous culture.

K Kovárová 1, A J Zehnder 1, T Egli 1
PMCID: PMC178220  PMID: 8755881

Abstract

Detailed comparison of growth kinetics at temperatures below and above the optimal temperature was carried out with Escherichia coli ML 30 (DSM 1329) in continuous culture. The culture was grown with glucose as the sole limiting source of carbon and energy (100 mg liter(-1) in feed medium), and the resulting steady-state concentrations of glucose were measured as a function of the dilution rate at 17.4, 28.4, 37, and 40 degrees C. The experimental data could not be described by the conventional Monod equation over the entire temperature range, but an extended form of the Monod model [mu = mu(max) x (s - s(min))/(Ks + s - s(min))], which predicts a finite substrate concentration at 0 growth rate (s(min)), provided a good fit. The two parameters mu(max) and s(min) were temperature dependent, whereas, surprisingly, fitting the model to the experimental data yielded virtually identical Ks values (approximately 33 microg liter(-1)) at all temperatures. A model that describes steady-state glucose concentrations as a function of temperature at constant growth rates is presented. In similar experiments with mixtures of glucose and galactose (1:1 mixture), the two sugars were utilized simultaneously at all temperatures examined, and their steady-state concentrations were reduced compared with to growth with either glucose or galactose alone. The results of laboratory-scale kinetic experiments are discussed with respect to the concentrations observed in natural environments.

Full Text

The Full Text of this article is available as a PDF (339.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams M. R., Little C. L., Easter M. C. Modelling the effect of pH, acidulant and temperature on the growth rate of Yersinia enterocolitica. J Appl Bacteriol. 1991 Jul;71(1):65–71. [PubMed] [Google Scholar]
  2. Button D. K. Kinetics of nutrient-limited transport and microbial growth. Microbiol Rev. 1985 Sep;49(3):270–297. doi: 10.1128/mr.49.3.270-297.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. DiMarco A. A., Averhoff B., Ornston L. N. Identification of the transcriptional activator pobR and characterization of its role in the expression of pobA, the structural gene for p-hydroxybenzoate hydroxylase in Acinetobacter calcoaceticus. J Bacteriol. 1993 Jul;175(14):4499–4506. doi: 10.1128/jb.175.14.4499-4506.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Egli T., Lendenmann U., Snozzi M. Kinetics of microbial growth with mixtures of carbon sources. Antonie Van Leeuwenhoek. 1993;63(3-4):289–298. doi: 10.1007/BF00871224. [DOI] [PubMed] [Google Scholar]
  5. Gibson A. M., Bratchell N., Roberts T. A. The effect of sodium chloride and temperature on the rate and extent of growth of Clostridium botulinum type A in pasteurized pork slurry. J Appl Bacteriol. 1987 Jun;62(6):479–490. doi: 10.1111/j.1365-2672.1987.tb02680.x. [DOI] [PubMed] [Google Scholar]
  6. Heitzer A., Kohler H. P., Reichert P., Hamer G. Utility of phenomenological models for describing temperature dependence of bacterial growth. Appl Environ Microbiol. 1991 Sep;57(9):2656–2665. doi: 10.1128/aem.57.9.2656-2665.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Heitzer A., Mason C. A., Hamer G. Heat shock gene expression in continuous cultures of Escherichia coli. J Biotechnol. 1992 Jan;22(1-2):153–169. doi: 10.1016/0168-1656(92)90139-z. [DOI] [PubMed] [Google Scholar]
  8. Herendeen S. L., VanBogelen R. A., Neidhardt F. C. Levels of major proteins of Escherichia coli during growth at different temperatures. J Bacteriol. 1979 Jul;139(1):185–194. doi: 10.1128/jb.139.1.185-194.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jones R. C., Hough J. S. The effect of temperature on the metabolism of baker's yeast growing on continuous culture. J Gen Microbiol. 1970 Jan;60(1):107–116. doi: 10.1099/00221287-60-1-107. [DOI] [PubMed] [Google Scholar]
  10. KNOWLES G., DOWNING A. L., BARRETT M. J. DETERMINATION OF KINETIC CONSTANTS FOR NITRIFYING BACTERIA IN MIXED CULTURE, WITH THE AID OF AN ELECTRONIC COMPUTER. J Gen Microbiol. 1965 Feb;38:263–278. doi: 10.1099/00221287-38-2-263. [DOI] [PubMed] [Google Scholar]
  11. MARR A. G., INGRAHAM J. L., SQUIRES C. L. EFFECT OF THE TEMPERATURE OF GROWTH OF ESCHERICHIA COLI ON THE FORMATION OF BETA-GALACTOSIDASE. J Bacteriol. 1964 Feb;87:356–362. doi: 10.1128/jb.87.2.356-362.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mainzer S. E., Hempfling W. P. Effects of growth temperature on yield and maintenance during glucose-limited continuous culture of Escherichia coli. J Bacteriol. 1976 Apr;126(1):251–256. doi: 10.1128/jb.126.1.251-256.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. McMeekin T. A., Chandler R. E., Doe P. E., Garland C. D., Olley J., Putro S., Ratkowsky D. A. Model for combined effect of temperature and salt concentration/water activity on the growth rate of Staphylococcus xylosus. J Appl Bacteriol. 1987 Jun;62(6):543–550. doi: 10.1111/j.1365-2672.1987.tb02687.x. [DOI] [PubMed] [Google Scholar]
  14. NG H., INGRAHAM J. L., MARR A. G. Damage and derepression in Escherichia coli resulting from growth at low temperatures. J Bacteriol. 1962 Aug;84:331–339. doi: 10.1128/jb.84.2.331-339.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Nishihara M., Ishinaga M., Kato M., Kito M. Temperature-sensitive formation of the phospholipid molecular species in Escherichia coli membranes. Biochim Biophys Acta. 1976 Apr 22;431(1):54–61. [PubMed] [Google Scholar]
  16. Palumbo S. A., Witter L. D. Influence of temperature on glucose utilization by Pseudomonas fluorescens. Appl Microbiol. 1969 Aug;18(2):137–141. doi: 10.1128/am.18.2.137-141.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Pirt S. J. The maintenance energy of bacteria in growing cultures. Proc R Soc Lond B Biol Sci. 1965 Oct 12;163(991):224–231. doi: 10.1098/rspb.1965.0069. [DOI] [PubMed] [Google Scholar]
  18. Ratkowsky D. A., Lowry R. K., McMeekin T. A., Stokes A. N., Chandler R. E. Model for bacterial culture growth rate throughout the entire biokinetic temperature range. J Bacteriol. 1983 Jun;154(3):1222–1226. doi: 10.1128/jb.154.3.1222-1226.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ratkowsky D. A., Olley J., McMeekin T. A., Ball A. Relationship between temperature and growth rate of bacterial cultures. J Bacteriol. 1982 Jan;149(1):1–5. doi: 10.1128/jb.149.1.1-5.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ron E. Z., Shani M. Growth rate of Escherichia coli at elevated temperatures: reversible inhibition of homoserine trans-succinylase. J Bacteriol. 1971 Aug;107(2):397–400. doi: 10.1128/jb.107.2.397-400.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rosso L., Lobry J. R., Bajard S., Flandrois J. P. Convenient Model To Describe the Combined Effects of Temperature and pH on Microbial Growth. Appl Environ Microbiol. 1995 Feb;61(2):610–616. doi: 10.1128/aem.61.2.610-616.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Rosso L., Lobry J. R., Flandrois J. P. An unexpected correlation between cardinal temperatures of microbial growth highlighted by a new model. J Theor Biol. 1993 Jun 21;162(4):447–463. doi: 10.1006/jtbi.1993.1099. [DOI] [PubMed] [Google Scholar]
  23. SCHULZE K. L., LIPE R. S. RELATIONSHIP BETWEEN SUBSTRATE CONCENTRATION, GROWTH RATE, AND RESPIRATION RATE OF ESCHERICHIA COLI IN CONTINUOUS CULTURE. Arch Mikrobiol. 1964 Apr 2;48:1–20. doi: 10.1007/BF00406595. [DOI] [PubMed] [Google Scholar]
  24. Senn H., Lendenmann U., Snozzi M., Hamer G., Egli T. The growth of Escherichia coli in glucose-limited chemostat cultures: a re-examination of the kinetics. Biochim Biophys Acta. 1994 Dec 15;1201(3):424–436. doi: 10.1016/0304-4165(94)90072-8. [DOI] [PubMed] [Google Scholar]
  25. Shaw M. K., Ingraham J. L. Fatty Acid Composition of Escherichia coli as a Possible Controlling Factor of the Minimal Growth Temperature. J Bacteriol. 1965 Jul;90(1):141–146. doi: 10.1128/jb.90.1.141-146.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Shehata T. E., Marr A. G. Effect of nutrient concentration on the growth of Escherichia coli. J Bacteriol. 1971 Jul;107(1):210–216. doi: 10.1128/jb.107.1.210-216.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Topiwala H., Sinclair C. G. Temperature relationship in continous culture. Biotechnol Bioeng. 1971 Nov;13(6):795–813. doi: 10.1002/bit.260130606. [DOI] [PubMed] [Google Scholar]
  28. Tros M. E., Schraa G., Zehnder A. Transformation of Low Concentrations of 3-Chlorobenzoate by Pseudomonas sp. Strain B13: Kinetics and Residual Concentrations. Appl Environ Microbiol. 1996 Feb;62(2):437–442. doi: 10.1128/aem.62.2.437-442.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Westerhoff H. V., Lolkema J. S., Otto R., Hellingwerf K. J. Thermodynamics of growth. Non-equilibrium thermodynamics of bacterial growth. The phenomenological and the mosaic approach. Biochim Biophys Acta. 1982 Dec 31;683(3-4):181–220. doi: 10.1016/0304-4173(82)90001-5. [DOI] [PubMed] [Google Scholar]
  30. Westermann P., Ahring B. K., Mah R. A. Temperature Compensation in Methanosarcina barkeri by Modulation of Hydrogen and Acetate Affinity. Appl Environ Microbiol. 1989 May;55(5):1262–1266. doi: 10.1128/aem.55.5.1262-1266.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wijtzes T., McClure P. J., Zwietering M. H., Roberts T. A. Modelling bacterial growth of Listeria monocytogenes as a function of water activity, pH and temperature. Int J Food Microbiol. 1993 Apr;18(2):139–149. doi: 10.1016/0168-1605(93)90218-6. [DOI] [PubMed] [Google Scholar]
  32. Wijtzes T., de Wit J. C., In Huis, Van't R., Zwietering M. H. Modelling Bacterial Growth of Lactobacillus curvatus as a Function of Acidity and Temperature. Appl Environ Microbiol. 1995 Jul;61(7):2533–2539. doi: 10.1128/aem.61.7.2533-2539.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Zwietering M. H., de Koos J. T., Hasenack B. E., de Witt J. C., van't Riet K. Modeling of bacterial growth as a function of temperature. Appl Environ Microbiol. 1991 Apr;57(4):1094–1101. doi: 10.1128/aem.57.4.1094-1101.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Zwietering M. H., de Wit J. C., Cuppers H. G., van 't Riet K. Modeling of bacterial growth with shifts in temperature. Appl Environ Microbiol. 1994 Jan;60(1):204–213. doi: 10.1128/aem.60.1.204-213.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. van Uden N. Transport-limited growth in the chemostat and its competitive inhibition; a theoretical treatment. Arch Mikrobiol. 1967;58(2):145–154. doi: 10.1007/BF00406675. [DOI] [PubMed] [Google Scholar]
  36. von Meyenburg Kaspar Transport-limited growth rates in a mutant of Escherichia coli. J Bacteriol. 1971 Sep;107(3):878–888. doi: 10.1128/jb.107.3.878-888.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES