Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Aug;178(15):4590–4596. doi: 10.1128/jb.178.15.4590-4596.1996

At least two separate gene clusters are involved in albicidin production by Xanthomonas albilineans.

P C Rott 1, L Costet 1, M J Davis 1, R Frutos 1, D W Gabriel 1
PMCID: PMC178228  PMID: 8755889

Abstract

Transposon mutagenesis was used to obtain mutations affecting production of the toxin albicidin in Xanthomonas albilineans, which causes leaf scald disease of sugarcane and is also pathogenic to corn. Transposon Tn5-gusA inserted randomly into genomic DNA of X. albilineans Xa23R1 at a frequency of 10(-4) to 10(-5) per recipient after conjugal transfer from Escherichia coli. Fifty prototrophic mutants defective in albicidin production were isolated from 7,100 Tn5-gusA insertional derivatives tested for toxin production by an antibiosis bioassay. EcoRI fragments containing Tn5 flanking sequences from two mutants (AM15 and AM40) were cloned and used to probe a wild-type Xa23R1 DNA library by colony hybridization. Nine cosmids showed homology to the AM15 probe, and six showed homology to the AM40 probe. Four cosmid clones hybridized to both probes. Forty-five of the 50 defective mutants were restored to albicidin production with two overlapping cosmid clones. Restriction mapping showed that these mutants span a genomic region of about 48 kb. At least one other gene cluster is also involved in albicidin production in Xa23R1. DNA fragments from the 48-kb cluster proved to be very specific to X. albilineans. Some mutants affected in albicidin production retain their ability to colonize sugarcane cultivated in vitro.

Full Text

The Full Text of this article is available as a PDF (206.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Basnayake W. V., Birch R. G. A gene from Alcaligenes denitrificans that confers albicidin resistance by reversible antibiotic binding. Microbiology. 1995 Mar;141(Pt 3):551–560. doi: 10.1099/13500872-141-3-551. [DOI] [PubMed] [Google Scholar]
  2. Birch R. G., Patil S. S. Preliminary characterization of an antibiotic produced by Xanthomonas albilineans which inhibits DNA synthesis in Escherichia coli. J Gen Microbiol. 1985 May;131(5):1069–1075. doi: 10.1099/00221287-131-5-1069. [DOI] [PubMed] [Google Scholar]
  3. Birch R. G., Pemberton J. M., Basnayake W. V. Stable albicidin resistance in Escherichia coli involves an altered outer-membrane nucleoside uptake system. J Gen Microbiol. 1990 Jan;136(1):51–58. doi: 10.1099/00221287-136-1-51. [DOI] [PubMed] [Google Scholar]
  4. Chomette G., Tranbaloc P., Delcourt A., Auriol M. Anatomie pathologique de la fibrose rétropéritonéale idiopathique. Le concept de fibrose systémique multifocale. Chirurgie. 1986;112(5):343–348. [PubMed] [Google Scholar]
  5. De Feyter R., Gabriel D. W. Use of cloned DNA methylase genes to increase the frequency of transfer of foreign genes into Xanthomonas campestris pv. malvacearum. J Bacteriol. 1991 Oct;173(20):6421–6427. doi: 10.1128/jb.173.20.6421-6427.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Egel D. S., Graham J. H., Stall R. E. Genomic Relatedness of Xanthomonas campestris Strains Causing Diseases of Citrus. Appl Environ Microbiol. 1991 Sep;57(9):2724–2730. doi: 10.1128/aem.57.9.2724-2730.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Leong S. A., Ditta G. S., Helinski D. R. Heme biosynthesis in Rhizobium. Identification of a cloned gene coding for delta-aminolevulinic acid synthetase from Rhizobium meliloti. J Biol Chem. 1982 Aug 10;257(15):8724–8730. [PubMed] [Google Scholar]
  8. Quigley N. B., Gross D. C. Syringomycin production among strains of Pseudomonas syringae pv. syringae: conservation of the syrB and syrD genes and activation of phytotoxin production by plant signal molecules. Mol Plant Microbe Interact. 1994 Jan-Feb;7(1):78–90. doi: 10.1094/mpmi-7-0078. [DOI] [PubMed] [Google Scholar]
  9. Sharma S. B., Signer E. R. Temporal and spatial regulation of the symbiotic genes of Rhizobium meliloti in planta revealed by transposon Tn5-gusA. Genes Dev. 1990 Mar;4(3):344–356. doi: 10.1101/gad.4.3.344. [DOI] [PubMed] [Google Scholar]
  10. Vieira J., Messing J. Production of single-stranded plasmid DNA. Methods Enzymol. 1987;153:3–11. doi: 10.1016/0076-6879(87)53044-0. [DOI] [PubMed] [Google Scholar]
  11. Walker M. J., Birch R. G., Pemberton J. M. Cloning and characterization of an albicidin resistance gene from Klebsiella oxytoca. Mol Microbiol. 1988 Jul;2(4):443–454. doi: 10.1111/j.1365-2958.1988.tb00050.x. [DOI] [PubMed] [Google Scholar]
  12. Xu G. W., Gross D. C. Evaluation of the Role of Syringomycin in Plant Pathogenesis by Using Tn5 Mutants of Pseudomonas syringae pv. syringae Defective in Syringomycin Production. Appl Environ Microbiol. 1988 Jun;54(6):1345–1353. doi: 10.1128/aem.54.6.1345-1353.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Zhang Y., Rowley K. B., Patil S. S. Genetic organization of a cluster of genes involved in the production of phaseolotoxin, a toxin produced by Pseudomonas syringae pv. phaseolicola. J Bacteriol. 1993 Oct;175(20):6451–6458. doi: 10.1128/jb.175.20.6451-6458.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES