Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Aug;178(15):4604–4610. doi: 10.1128/jb.178.15.4604-4610.1996

Cloning and characterization of the metE gene encoding S-adenosylmethionine synthetase from Bacillus subtilis.

R R Yocum 1, J B Perkins 1, C L Howitt 1, J Pero 1
PMCID: PMC178230  PMID: 8755891

Abstract

The metE gene, encoding S-adenosylmethionine synthetase (EC 2.5.1.6) from Bacillus subtilis, was cloned in two steps by normal and inverse PCR. The DNA sequence of the metE gene contains an open reading frame which encodes a 400-amino-acid sequence that is homologous to other known S-adenosylmethionine synthetases. The cloned gene complements the metE1 mutation and integrates at or near the chromosomal site of metE1. Expression of S-adenosylmethionine synthetase is reduced by only a factor of about 2 by exogenous methioinine. Overproduction of S-adenosylmethionine synthetase from a strong constitutive promoter leads to methionine auxotrophy in B. subtilis, suggesting that S-adenosylmethionine is a corepressor of methionine biosynthesis in B. subtilis, as others have already shown for Escherichia coli.

Full Text

The Full Text of this article is available as a PDF (351.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen E. R., Orrego C., Wabiko H., Freese E. An ethA mutation in Bacillus subtilis 168 permits induction of sporulation by ethionine and increases DNA modification of bacteriophage phi 105. J Bacteriol. 1986 Apr;166(1):1–8. doi: 10.1128/jb.166.1.1-8.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Azevedo V., Sorokin A., Ehrlich S. D., Serror P. The transcriptional organization of the Bacillus subtilis 168 chromosome region between the spoVAF and serA genetic loci. Mol Microbiol. 1993 Oct;10(2):397–405. doi: 10.1111/j.1365-2958.1993.tb02671.x. [DOI] [PubMed] [Google Scholar]
  3. Backman K., Chen Y. M., Magasanik B. Physical and genetic characterization of the glnA--glnG region of the Escherichia coli chromosome. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3743–3747. doi: 10.1073/pnas.78.6.3743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Balakrishnan R., Frohlich M., Rahaim P. T., Backman K., Yocum R. R. Appendix. Cloning and sequence of the gene encoding enzyme E-1 from the methionine salvage pathway of Klebsiella oxytoca. J Biol Chem. 1993 Nov 25;268(33):24792–24795. [PubMed] [Google Scholar]
  5. Cherest H., Surdin-Kerjan Y. S-adenosyl methionine requiring mutants in Saccharomyces cerevisiae: evidences for the existence of two methionine adenosyl transferases. Mol Gen Genet. 1978 Jul 11;163(2):153–167. doi: 10.1007/BF00267406. [DOI] [PubMed] [Google Scholar]
  6. Dubnau D., Davidoff-Abelson R. Fate of transforming DNA following uptake by competent Bacillus subtilis. I. Formation and properties of the donor-recipient complex. J Mol Biol. 1971 Mar 14;56(2):209–221. doi: 10.1016/0022-2836(71)90460-8. [DOI] [PubMed] [Google Scholar]
  7. Gilliland G. L., Markham G. D., Davies D. R. S-adenosylmethionine synthetase from Escherichia coli. Crystallization and preliminary X-ray diffraction studies. J Biol Chem. 1983 Jun 10;258(11):6963–6964. [PubMed] [Google Scholar]
  8. Greene R. C., Hunter J. S., Coch E. H. Properties of metK mutants of Escherichia coli K-12. J Bacteriol. 1973 Jul;115(1):57–67. doi: 10.1128/jb.115.1.57-67.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hafner E. W., Tabor C. W., Tabor H. Isolation of a metK mutant with a temperature-sensitive S-adenosylmethionine synthetase. J Bacteriol. 1977 Dec;132(3):832–840. doi: 10.1128/jb.132.3.832-840.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hoch J. A., Barat M., Anagnostopoulos C. Transformation and transduction in recombination-defective mutants of Bacillus subtilis. J Bacteriol. 1967 Jun;93(6):1925–1937. doi: 10.1128/jb.93.6.1925-1937.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Holloway C. T., Greene R. C., Su C. H. Regulation of S-adenosylmethionine synthetase in Escherichia coli. J Bacteriol. 1970 Nov;104(2):734–747. doi: 10.1128/jb.104.2.734-747.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Horinouchi S., Weisblum B. Nucleotide sequence and functional map of pC194, a plasmid that specifies inducible chloramphenicol resistance. J Bacteriol. 1982 May;150(2):815–825. doi: 10.1128/jb.150.2.815-825.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lerner C. G., Inouye M. Low copy number plasmids for regulated low-level expression of cloned genes in Escherichia coli with blue/white insert screening capability. Nucleic Acids Res. 1990 Aug 11;18(15):4631–4631. doi: 10.1093/nar/18.15.4631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Marahiel M. A., Zuber P., Czekay G., Losick R. Identification of the promoter for a peptide antibiotic biosynthesis gene from Bacillus brevis and its regulation in Bacillus subtilis. J Bacteriol. 1987 May;169(5):2215–2222. doi: 10.1128/jb.169.5.2215-2222.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Markham G. D., DeParasis J., Gatmaitan J. The sequence of metK, the structural gene for S-adenosylmethionine synthetase in Escherichia coli. J Biol Chem. 1984 Dec 10;259(23):14505–14507. [PubMed] [Google Scholar]
  16. Markham G. D., Hafner E. W., Tabor C. W., Tabor H. S-Adenosylmethionine synthetase from Escherichia coli. J Biol Chem. 1980 Oct 10;255(19):9082–9092. [PubMed] [Google Scholar]
  17. Moran C. P., Jr, Lang N., LeGrice S. F., Lee G., Stephens M., Sonenshein A. L., Pero J., Losick R. Nucleotide sequences that signal the initiation of transcription and translation in Bacillus subtilis. Mol Gen Genet. 1982;186(3):339–346. doi: 10.1007/BF00729452. [DOI] [PubMed] [Google Scholar]
  18. Mulligan J. T., Margolin W., Krueger J. H., Walker G. C. Mutations affecting regulation of methionine biosynthetic genes isolated by use of met-lac fusions. J Bacteriol. 1982 Aug;151(2):609–619. doi: 10.1128/jb.151.2.609-619.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ochi K., Freese E. A decrease in S-adenosylmethionine synthetase activity increases the probability of spontaneous sporulation. J Bacteriol. 1982 Oct;152(1):400–410. doi: 10.1128/jb.152.1.400-410.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Reichard P. The anaerobic ribonucleotide reductase from Escherichia coli. J Biol Chem. 1993 Apr 25;268(12):8383–8386. [PubMed] [Google Scholar]
  21. Sakata S. F., Shelly L. L., Ruppert S., Schutz G., Chou J. Y. Cloning and expression of murine S-adenosylmethionine synthetase. J Biol Chem. 1993 Jul 5;268(19):13978–13986. [PubMed] [Google Scholar]
  22. Satishchandran C., Taylor J. C., Markham G. D. Isozymes of S-adenosylmethionine synthetase are encoded by tandemly duplicated genes in Escherichia coli. Mol Microbiol. 1993 Aug;9(4):835–846. doi: 10.1111/j.1365-2958.1993.tb01742.x. [DOI] [PubMed] [Google Scholar]
  23. Satishchandran C., Taylor J. C., Markham G. D. Novel Escherichia coli K-12 mutants impaired in S-adenosylmethionine synthesis. J Bacteriol. 1990 Aug;172(8):4489–4496. doi: 10.1128/jb.172.8.4489-4496.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Spizizen J. TRANSFORMATION OF BIOCHEMICALLY DEFICIENT STRAINS OF BACILLUS SUBTILIS BY DEOXYRIBONUCLEATE. Proc Natl Acad Sci U S A. 1958 Oct 15;44(10):1072–1078. doi: 10.1073/pnas.44.10.1072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Thomas D., Rothstein R., Rosenberg N., Surdin-Kerjan Y. SAM2 encodes the second methionine S-adenosyl transferase in Saccharomyces cerevisiae: physiology and regulation of both enzymes. Mol Cell Biol. 1988 Dec;8(12):5132–5139. doi: 10.1128/mcb.8.12.5132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Vander Horn P. B., Zahler S. A. Cloning and nucleotide sequence of the leucyl-tRNA synthetase gene of Bacillus subtilis. J Bacteriol. 1992 Jun;174(12):3928–3935. doi: 10.1128/jb.174.12.3928-3935.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Vieira J., Messing J. New pUC-derived cloning vectors with different selectable markers and DNA replication origins. Gene. 1991 Apr;100:189–194. doi: 10.1016/0378-1119(91)90365-i. [DOI] [PubMed] [Google Scholar]
  28. Wabiko H., Ochi K., Nguyen D. M., Allen E. R., Freese E. Genetic mapping and physiological consequences of metE mutations of Bacillus subtilis. J Bacteriol. 1988 Jun;170(6):2705–2710. doi: 10.1128/jb.170.6.2705-2710.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]
  30. Yocum R. R., Hanley S., West R., Jr, Ptashne M. Use of lacZ fusions to delimit regulatory elements of the inducible divergent GAL1-GAL10 promoter in Saccharomyces cerevisiae. Mol Cell Biol. 1984 Oct;4(10):1985–1998. doi: 10.1128/mcb.4.10.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Yoshida K., Seki S., Fujimura M., Miwa Y., Fujita Y. Cloning and sequencing of a 36-kb region of the Bacillus subtilis genome between the gnt and iol operons. DNA Res. 1995;2(2):61–69. doi: 10.1093/dnares/2.2.61. [DOI] [PubMed] [Google Scholar]
  32. Youngman P., Perkins J. B., Losick R. Construction of a cloning site near one end of Tn917 into which foreign DNA may be inserted without affecting transposition in Bacillus subtilis or expression of the transposon-borne erm gene. Plasmid. 1984 Jul;12(1):1–9. doi: 10.1016/0147-619x(84)90061-1. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES