Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Aug;178(15):4611–4619. doi: 10.1128/jb.178.15.4611-4619.1996

Cold shock stress-induced proteins in Bacillus subtilis.

P Graumann 1, K Schröder 1, R Schmid 1, M A Marahiel 1
PMCID: PMC178231  PMID: 8755892

Abstract

Bacteria respond to a decrease in temperature with the induction of proteins that are classified as cold-induced proteins (CIPs). Using two-dimensional gel electrophoresis, we analyzed the cold shock response in Bacillus subtilis. After a shift from 37 to 15 degrees C the synthesis of a majority of proteins was repressed; in contrast, 37 proteins were synthesized at rates higher than preshift rates. One hour after cold shock, the induction of CIPs decreased, and after 2 h, general protein synthesis resumed. The identified main CIPs were excised from two-dimensional gels and were subjected to microsequencing. Three small acidic proteins that showed the highest relative induction after cold shock were highly homologous and belonged to a protein family of which one member, the major cold shock protein, CspB, has previously been characterized. Two-dimensional gel analyses of a cspB null mutant revealed that CspB affects the level of induction of several CIPs. Other identified CIPs function at various levels of cellular physiology, such as chemotaxis (CheY), sugar uptake (Hpr), translation (ribosomal proteins S6 and L7/L12), protein folding (PPiB), and general metabolism (CysK, Ilvc, Gap, and triosephosphate isomerase).

Full Text

The Full Text of this article is available as a PDF (650.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antelmann H., Bernhardt J., Schmid R., Hecker M. A gene at 333 degrees on the Bacillus subtilis chromosome encodes the newly identified sigma B-dependent general stress protein GspA. J Bacteriol. 1995 Jun;177(12):3540–3545. doi: 10.1128/jb.177.12.3540-3545.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Av-Gay Y., Aharonowitz Y., Cohen G. Streptomyces contain a 7.0 kDa cold shock like protein. Nucleic Acids Res. 1992 Oct 25;20(20):5478–5478. doi: 10.1093/nar/20.20.5478. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bischoff D. S., Weinreich M. D., Ordal G. W. Nucleotide sequences of Bacillus subtilis flagellar biosynthetic genes fliP and fliQ and identification of a novel flagellar gene, fliZ. J Bacteriol. 1992 Jun;174(12):4017–4025. doi: 10.1128/jb.174.12.4017-4025.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  5. Brandi A., Pon C. L., Gualerzi C. O. Interaction of the main cold shock protein CS7.4 (CspA) of Escherichia coli with the promoter region of hns. Biochimie. 1994;76(10-11):1090–1098. doi: 10.1016/0300-9084(94)90035-3. [DOI] [PubMed] [Google Scholar]
  6. Brissette J. L., Weiner L., Ripmaster T. L., Model P. Characterization and sequence of the Escherichia coli stress-induced psp operon. J Mol Biol. 1991 Jul 5;220(1):35–48. doi: 10.1016/0022-2836(91)90379-k. [DOI] [PubMed] [Google Scholar]
  7. Broeze R. J., Solomon C. J., Pope D. H. Effects of low temperature on in vivo and in vitro protein synthesis in Escherichia coli and Pseudomonas fluorescens. J Bacteriol. 1978 Jun;134(3):861–874. doi: 10.1128/jb.134.3.861-874.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chen N. Y., Zhang J. J., Paulus H. Chromosomal location of the Bacillus subtilis aspartokinase II gene and nucleotide sequence of the adjacent genes homologous to uvrC and trx of Escherichia coli. J Gen Microbiol. 1989 Nov;135(11):2931–2940. doi: 10.1099/00221287-135-11-2931. [DOI] [PubMed] [Google Scholar]
  9. Cloutier J., Prévost D., Nadeau P., Antoun H. Heat and cold shock protein synthesis in arctic and temperate strains of rhizobia. Appl Environ Microbiol. 1992 Sep;58(9):2846–2853. doi: 10.1128/aem.58.9.2846-2853.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Givskov M., Eberl L., Molin S. Responses to nutrient starvation in Pseudomonas putida KT2442: two-dimensional electrophoretic analysis of starvation- and stress-induced proteins. J Bacteriol. 1994 Aug;176(16):4816–4824. doi: 10.1128/jb.176.16.4816-4824.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Grau R., Gardiol D., Glikin G. C., de Mendoza D. DNA supercoiling and thermal regulation of unsaturated fatty acid synthesis in Bacillus subtilis. Mol Microbiol. 1994 Mar;11(5):933–941. doi: 10.1111/j.1365-2958.1994.tb00372.x. [DOI] [PubMed] [Google Scholar]
  12. Graumann P., Marahiel M. A. A case of convergent evolution of nucleic acid binding modules. Bioessays. 1996 Apr;18(4):309–315. doi: 10.1002/bies.950180409. [DOI] [PubMed] [Google Scholar]
  13. Graumann P., Marahiel M. A. The major cold shock protein of Bacillus subtilis CspB binds with high affinity to the ATTGG- and CCAAT sequences in single stranded oligonucleotides. FEBS Lett. 1994 Jan 31;338(2):157–160. doi: 10.1016/0014-5793(94)80355-2. [DOI] [PubMed] [Google Scholar]
  14. Hengge-Aronis R. Survival of hunger and stress: the role of rpoS in early stationary phase gene regulation in E. coli. Cell. 1993 Jan 29;72(2):165–168. doi: 10.1016/0092-8674(93)90655-a. [DOI] [PubMed] [Google Scholar]
  15. Herrler M., Bang H., Marahiel M. A. Cloning and characterization of ppiB, a Bacillus subtilis gene which encodes a cyclosporin A-sensitive peptidyl-prolyl cis-trans isomerase. Mol Microbiol. 1994 Mar;11(6):1073–1083. doi: 10.1111/j.1365-2958.1994.tb00384.x. [DOI] [PubMed] [Google Scholar]
  16. Higo K., Otaka E., Osawa S. Purification and characterization of 30S ribosomal proteins from Bacillus subtilis: correlation to Escherichia coli 30S proteins. Mol Gen Genet. 1982;185(2):239–244. doi: 10.1007/BF00330792. [DOI] [PubMed] [Google Scholar]
  17. Hudspeth D. S., Vary P. S. spoVG sequence of Bacillus megaterium and Bacillus subtilis. Biochim Biophys Acta. 1992 Mar 24;1130(2):229–231. doi: 10.1016/0167-4781(92)90536-9. [DOI] [PubMed] [Google Scholar]
  18. Itoh T., Wittmann-Liebold B. The primary structure of Bacillus subtilis acidic ribonsomal protein B-19. Isolation and characterization of peptides and the complete amino acid sequence. J Biochem. 1980 Apr;87(4):1185–1201. [PubMed] [Google Scholar]
  19. Jones P. G., Cashel M., Glaser G., Neidhardt F. C. Function of a relaxed-like state following temperature downshifts in Escherichia coli. J Bacteriol. 1992 Jun;174(12):3903–3914. doi: 10.1128/jb.174.12.3903-3914.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Jones P. G., Inouye M. The cold-shock response--a hot topic. Mol Microbiol. 1994 Mar;11(5):811–818. doi: 10.1111/j.1365-2958.1994.tb00359.x. [DOI] [PubMed] [Google Scholar]
  21. Jones P. G., Krah R., Tafuri S. R., Wolffe A. P. DNA gyrase, CS7.4, and the cold shock response in Escherichia coli. J Bacteriol. 1992 Sep;174(18):5798–5802. doi: 10.1128/jb.174.18.5798-5802.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Jones P. G., VanBogelen R. A., Neidhardt F. C. Induction of proteins in response to low temperature in Escherichia coli. J Bacteriol. 1987 May;169(5):2092–2095. doi: 10.1128/jb.169.5.2092-2095.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Klein C., Kaletta C., Schnell N., Entian K. D. Analysis of genes involved in biosynthesis of the lantibiotic subtilin. Appl Environ Microbiol. 1992 Jan;58(1):132–142. doi: 10.1128/aem.58.1.132-142.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. La Teana A., Brandi A., Falconi M., Spurio R., Pon C. L., Gualerzi C. O. Identification of a cold shock transcriptional enhancer of the Escherichia coli gene encoding nucleoid protein H-NS. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10907–10911. doi: 10.1073/pnas.88.23.10907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lee S. J., Xie A., Jiang W., Etchegaray J. P., Jones P. G., Inouye M. Family of the major cold-shock protein, CspA (CS7.4), of Escherichia coli, whose members show a high sequence similarity with the eukaryotic Y-box binding proteins. Mol Microbiol. 1994 Mar;11(5):833–839. doi: 10.1111/j.1365-2958.1994.tb00361.x. [DOI] [PubMed] [Google Scholar]
  26. Lottering E. A., Streips U. N. Induction of cold shock proteins in Bacillus subtilis. Curr Microbiol. 1995 Apr;30(4):193–199. doi: 10.1007/BF00293633. [DOI] [PubMed] [Google Scholar]
  27. Ludwig H. C., Lottspeich F., Henschen A., Ladenstein R., Bacher A. Heavy riboflavin synthase of Bacillus subtilis. Primary structure of the beta subunit. J Biol Chem. 1987 Jan 25;262(3):1016–1021. [PubMed] [Google Scholar]
  28. MacDonald G. H., Itoh-Lindstrom Y., Ting J. P. The transcriptional regulatory protein, YB-1, promotes single-stranded regions in the DRA promoter. J Biol Chem. 1995 Feb 24;270(8):3527–3533. doi: 10.1074/jbc.270.8.3527. [DOI] [PubMed] [Google Scholar]
  29. Makhatadze G. I., Marahiel M. A. Effect of pH and phosphate ions on self-association properties of the major cold-shock protein from Bacillus subtilis. Protein Sci. 1994 Nov;3(11):2144–2147. doi: 10.1002/pro.5560031127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Mitchell C., Morris P. W., Vary J. C. Amino acid sequences of several Bacillus subtilis proteins modified by apparent guanylylation. Mol Microbiol. 1992 Jun;6(12):1579–1581. doi: 10.1111/j.1365-2958.1992.tb00882.x. [DOI] [PubMed] [Google Scholar]
  31. Mitchell C., Morris P. W., Vary J. C. Identification of proteins phosphorylated by ATP during sporulation of Bacillus subtilis. J Bacteriol. 1992 Apr;174(8):2474–2477. doi: 10.1128/jb.174.8.2474-2477.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Newkirk K., Feng W., Jiang W., Tejero R., Emerson S. D., Inouye M., Montelione G. T. Solution NMR structure of the major cold shock protein (CspA) from Escherichia coli: identification of a binding epitope for DNA. Proc Natl Acad Sci U S A. 1994 May 24;91(11):5114–5118. doi: 10.1073/pnas.91.11.5114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Ogasawara N., Nakai S., Yoshikawa H. Systematic sequencing of the 180 kilobase region of the Bacillus subtilis chromosome containing the replication origin. DNA Res. 1994;1(1):1–14. doi: 10.1093/dnares/1.1.1. [DOI] [PubMed] [Google Scholar]
  34. Phan-Thanh L., Gormon T. Analysis of heat and cold shock proteins in Listeria by two-dimensional electrophoresis. Electrophoresis. 1995 Mar;16(3):444–450. doi: 10.1002/elps.1150160172. [DOI] [PubMed] [Google Scholar]
  35. Ray M. K., Sitaramamma T., Ghandhi S., Shivaji S. Occurrence and expression of cspA, a cold shock gene, in Antarctic psychrotrophic bacteria. FEMS Microbiol Lett. 1994 Feb 1;116(1):55–60. doi: 10.1111/j.1574-6968.1994.tb06675.x. [DOI] [PubMed] [Google Scholar]
  36. Rider M. H., Puype M., Van Damme J., Gevaert K., De Boeck S., D'Alayer J., Rasmussen H. H., Celis J. E., Vanderkerchove J. An agarose-based gel-concentration system for microsequence and mass spectrometric characterization of proteins previously purified in polyacrylamide gels starting at low picomole levels. Eur J Biochem. 1995 May 15;230(1):258–265. doi: 10.1111/j.1432-1033.1995.0258i.x. [DOI] [PubMed] [Google Scholar]
  37. Schindelin H., Jiang W., Inouye M., Heinemann U. Crystal structure of CspA, the major cold shock protein of Escherichia coli. Proc Natl Acad Sci U S A. 1994 May 24;91(11):5119–5123. doi: 10.1073/pnas.91.11.5119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Schindelin H., Marahiel M. A., Heinemann U. Universal nucleic acid-binding domain revealed by crystal structure of the B. subtilis major cold-shock protein. Nature. 1993 Jul 8;364(6433):164–168. doi: 10.1038/364164a0. [DOI] [PubMed] [Google Scholar]
  39. Schindler T., Herrler M., Marahiel M. A., Schmid F. X. Extremely rapid protein folding in the absence of intermediates. Nat Struct Biol. 1995 Aug;2(8):663–673. doi: 10.1038/nsb0895-663. [DOI] [PubMed] [Google Scholar]
  40. Schmidt A., Schiesswohl M., Völker U., Hecker M., Schumann W. Cloning, sequencing, mapping, and transcriptional analysis of the groESL operon from Bacillus subtilis. J Bacteriol. 1992 Jun;174(12):3993–3999. doi: 10.1128/jb.174.12.3993-3999.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Schnuchel A., Wiltscheck R., Czisch M., Herrler M., Willimsky G., Graumann P., Marahiel M. A., Holak T. A. Structure in solution of the major cold-shock protein from Bacillus subtilis. Nature. 1993 Jul 8;364(6433):169–171. doi: 10.1038/364169a0. [DOI] [PubMed] [Google Scholar]
  42. Schröder K., Graumann P., Schnuchel A., Holak T. A., Marahiel M. A. Mutational analysis of the putative nucleic acid-binding surface of the cold-shock domain, CspB, revealed an essential role of aromatic and basic residues in binding of single-stranded DNA containing the Y-box motif. Mol Microbiol. 1995 May;16(4):699–708. doi: 10.1111/j.1365-2958.1995.tb02431.x. [DOI] [PubMed] [Google Scholar]
  43. Schröder K., Zuber P., Willimsky G., Wagner B., Marahiel M. A. Mapping of the Bacillus subtilis cspB gene and cloning of its homologs in thermophilic, mesophilic and psychrotrophic bacilli. Gene. 1993 Dec 22;136(1-2):277–280. doi: 10.1016/0378-1119(93)90479-m. [DOI] [PubMed] [Google Scholar]
  44. Trach K., Chapman J. W., Piggot P., LeCoq D., Hoch J. A. Complete sequence and transcriptional analysis of the spo0F region of the Bacillus subtilis chromosome. J Bacteriol. 1988 Sep;170(9):4194–4208. doi: 10.1128/jb.170.9.4194-4208.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. VanBogelen R. A., Neidhardt F. C. Ribosomes as sensors of heat and cold shock in Escherichia coli. Proc Natl Acad Sci U S A. 1990 Aug;87(15):5589–5593. doi: 10.1073/pnas.87.15.5589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Viaene A., Dhaese P. Sequence of the glyceraldehyde-3-phosphate dehydrogenase gene from Bacillus subtilis. Nucleic Acids Res. 1989 Feb 11;17(3):1251–1251. doi: 10.1093/nar/17.3.1251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Völker U., Engelmann S., Maul B., Riethdorf S., Völker A., Schmid R., Mach H., Hecker M. Analysis of the induction of general stress proteins of Bacillus subtilis. Microbiology. 1994 Apr;140(Pt 4):741–752. doi: 10.1099/00221287-140-4-741. [DOI] [PubMed] [Google Scholar]
  48. Willimsky G., Bang H., Fischer G., Marahiel M. A. Characterization of cspB, a Bacillus subtilis inducible cold shock gene affecting cell viability at low temperatures. J Bacteriol. 1992 Oct;174(20):6326–6335. doi: 10.1128/jb.174.20.6326-6335.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Wu L., Welker N. E. Temperature-induced protein synthesis in Bacillus stearothermophilus NUB36. J Bacteriol. 1991 Aug;173(15):4889–4892. doi: 10.1128/jb.173.15.4889-4892.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Yura T., Nagai H., Mori H. Regulation of the heat-shock response in bacteria. Annu Rev Microbiol. 1993;47:321–350. doi: 10.1146/annurev.mi.47.100193.001541. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES