Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Aug;178(15):4670–4678. doi: 10.1128/jb.178.15.4670-4678.1996

HmbR outer membrane receptors of pathogenic Neisseria spp.: iron-regulated, hemoglobin-binding proteins with a high level of primary structure conservation.

I Stojiljkovic 1, J Larson 1, V Hwa 1, S Anic 1, M So 1
PMCID: PMC178238  PMID: 8755899

Abstract

We have recently cloned and characterized the hemoglobin receptor gene from Neisseria meningitidis serogroup C. N. meningitidis cells expressing HmbR protein were able to bind biotinylated hemoglobin, and the binding was specifically inhibited by unlabeled hemoglobin and not heme. The HmbR-mediated hemoglobin binding activity of N. meningitidis cells was shown to be iron regulated. The presence of hemoglobin but not heme in the growth medium stimulated HmbR-mediated hemoglobin binding activity. The efficiency of utilization of different hemoglobins by the HmbR-expressing N. meningitidis cells was shown to be species specific; human hemoglobin was the best source of iron, followed by horse, rat, turkey, dog, mouse, and sheep hemoglobins, The phenotypic characterization of HmbR mutants of some clinical strains of N. meningitidis suggested the existence of two unrelated hemoglobin receptors. The HmbR-unrelated hemoglobin receptor was shown to be identical to Hpu, the hemoglobin-haptoglobin receptor of N. meningitidis. The Hpu-dependent hemoglobin utilization system was not able to distinguish between different sources of hemoglobin; all animal hemoglobins were utilized equally well. HmbR-like genes are also present in N. meningitidis serogroups A and B, Neisseria gonorrhoeae MS11 and FA19, Neisseria perflava, and Neisseria polysaccharea. The hemoglobin receptor genes from N. meningitidis serogroups A and B and N. gonorrhoeae MS11 were cloned, and their nucleotide sequences were determined. The nucleotide sequence identity ranged between 86.5% (for N. meningitidis serogroup B hmbR and MS11 hmbR) and 93.4% (for N. meningitidis serogroup B hmbR and N. meningitidis serogroup C hmbR). The deduced amino acid sequences of these neisserial hemoglobin receptors were also highly related, with overall 84.7% conserved amino acid residues. A stop codon was found in the hmbR gene of N. gonorrhoeae MS11. This strain was still able to use hemoglobin and hemoglobin-haptoglobin complexes as iron sources, indicating that some gonococci may express only the HmbR-independent hemoglobin utilization system.

Full Text

The Full Text of this article is available as a PDF (470.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bagg A., Neilands J. B. Molecular mechanism of regulation of siderophore-mediated iron assimilation. Microbiol Rev. 1987 Dec;51(4):509–518. doi: 10.1128/mr.51.4.509-518.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Biswas G. D., Sparling P. F. Characterization of lbpA, the structural gene for a lactoferrin receptor in Neisseria gonorrhoeae. Infect Immun. 1995 Aug;63(8):2958–2967. doi: 10.1128/iai.63.8.2958-2967.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Calderwood S. B., Mekalanos J. J. Iron regulation of Shiga-like toxin expression in Escherichia coli is mediated by the fur locus. J Bacteriol. 1987 Oct;169(10):4759–4764. doi: 10.1128/jb.169.10.4759-4764.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cope L. D., Thomas S. E., Latimer J. L., Slaughter C. A., Müller-Eberhard U., Hansen E. J. The 100 kDa haem:haemopexin-binding protein of Haemophilus influenzae: structure and localization. Mol Microbiol. 1994 Sep;13(5):863–873. doi: 10.1111/j.1365-2958.1994.tb00478.x. [DOI] [PubMed] [Google Scholar]
  5. Cope L. D., Yogev R., Muller-Eberhard U., Hansen E. J. A gene cluster involved in the utilization of both free heme and heme:hemopexin by Haemophilus influenzae type b. J Bacteriol. 1995 May;177(10):2644–2653. doi: 10.1128/jb.177.10.2644-2653.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cornelissen C. N., Biswas G. D., Tsai J., Paruchuri D. K., Thompson S. A., Sparling P. F. Gonococcal transferrin-binding protein 1 is required for transferrin utilization and is homologous to TonB-dependent outer membrane receptors. J Bacteriol. 1992 Sep;174(18):5788–5797. doi: 10.1128/jb.174.18.5788-5797.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cornelissen C. N., Sparling P. F. Iron piracy: acquisition of transferrin-bound iron by bacterial pathogens. Mol Microbiol. 1994 Dec;14(5):843–850. doi: 10.1111/j.1365-2958.1994.tb01320.x. [DOI] [PubMed] [Google Scholar]
  8. Crosa J. H. Genetics and molecular biology of siderophore-mediated iron transport in bacteria. Microbiol Rev. 1989 Dec;53(4):517–530. doi: 10.1128/mr.53.4.517-530.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dyer D. W., West E. P., Sparling P. F. Effects of serum carrier proteins on the growth of pathogenic neisseriae with heme-bound iron. Infect Immun. 1987 Sep;55(9):2171–2175. doi: 10.1128/iai.55.9.2171-2175.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Elkins C., Chen C. J., Thomas C. E. Characterization of the hgbA locus encoding a hemoglobin receptor from Haemophilus ducreyi. Infect Immun. 1995 Jun;63(6):2194–2200. doi: 10.1128/iai.63.6.2194-2200.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Elkins C. Identification and purification of a conserved heme-regulated hemoglobin-binding outer membrane protein from Haemophilus ducreyi. Infect Immun. 1995 Apr;63(4):1241–1245. doi: 10.1128/iai.63.4.1241-1245.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fenno J. C., Shaikh A., Fives-Taylor P. Characterization of allelic replacement in Streptococcus parasanguis: transformation and homologous recombination in a 'nontransformable' streptococcus. Gene. 1993 Aug 16;130(1):81–90. doi: 10.1016/0378-1119(93)90349-8. [DOI] [PubMed] [Google Scholar]
  13. Frangipane M. E., Morton D. J., Wooten J. A., Pozsgay J. M., Stull T. L. Binding of human hemoglobin by Haemophilus influenzae. FEMS Microbiol Lett. 1994 May 15;118(3):243–248. doi: 10.1111/j.1574-6968.1994.tb06835.x. [DOI] [PubMed] [Google Scholar]
  14. Genco C. A., Simpson W., Forng R. Y., Egal M., Odusanya B. M. Characterization of a Tn4351-generated hemin uptake mutant of Porphyromonas gingivalis: evidence for the coordinate regulation of virulence factors by hemin. Infect Immun. 1995 Jul;63(7):2459–2466. doi: 10.1128/iai.63.7.2459-2466.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gerlach G. F., Klashinsky S., Anderson C., Potter A. A., Willson P. J. Characterization of two genes encoding distinct transferrin-binding proteins in different Actinobacillus pleuropneumoniae isolates. Infect Immun. 1992 Aug;60(8):3253–3261. doi: 10.1128/iai.60.8.3253-3261.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hantke K. Regulation of ferric iron transport in Escherichia coli K12: isolation of a constitutive mutant. Mol Gen Genet. 1981;182(2):288–292. doi: 10.1007/BF00269672. [DOI] [PubMed] [Google Scholar]
  17. Henderson D. P., Payne S. M. Characterization of the Vibrio cholerae outer membrane heme transport protein HutA: sequence of the gene, regulation of expression, and homology to the family of TonB-dependent proteins. J Bacteriol. 1994 Jun;176(11):3269–3277. doi: 10.1128/jb.176.11.3269-3277.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Henderson D. P., Payne S. M. Cloning and characterization of the Vibrio cholerae genes encoding the utilization of iron from haemin and haemoglobin. Mol Microbiol. 1993 Feb;7(3):461–469. doi: 10.1111/j.1365-2958.1993.tb01137.x. [DOI] [PubMed] [Google Scholar]
  19. Henderson D. P., Payne S. M. Vibrio cholerae iron transport systems: roles of heme and siderophore iron transport in virulence and identification of a gene associated with multiple iron transport systems. Infect Immun. 1994 Nov;62(11):5120–5125. doi: 10.1128/iai.62.11.5120-5125.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Jarosik G. P., Sanders J. D., Cope L. D., Muller-Eberhard U., Hansen E. J. A functional tonB gene is required for both utilization of heme and virulence expression by Haemophilus influenzae type b. Infect Immun. 1994 Jun;62(6):2470–2477. doi: 10.1128/iai.62.6.2470-2477.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kadner R. J. Vitamin B12 transport in Escherichia coli: energy coupling between membranes. Mol Microbiol. 1990 Dec;4(12):2027–2033. doi: 10.1111/j.1365-2958.1990.tb00562.x. [DOI] [PubMed] [Google Scholar]
  22. Klebba P. E., Rutz J. M., Liu J., Murphy C. K. Mechanisms of TonB-catalyzed iron transport through the enteric bacterial cell envelope. J Bioenerg Biomembr. 1993 Dec;25(6):603–611. doi: 10.1007/BF00770247. [DOI] [PubMed] [Google Scholar]
  23. Lee B. C., Hill P. Identification of an outer-membrane haemoglobin-binding protein in Neisseria meningitidis. J Gen Microbiol. 1992 Dec;138(12):2647–2656. doi: 10.1099/00221287-138-12-2647. [DOI] [PubMed] [Google Scholar]
  24. Lewis L. A., Dyer D. W. Identification of an iron-regulated outer membrane protein of Neisseria meningitidis involved in the utilization of hemoglobin complexed to haptoglobin. J Bacteriol. 1995 Mar;177(5):1299–1306. doi: 10.1128/jb.177.5.1299-1306.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Létoffé S., Ghigo J. M., Wandersman C. Iron acquisition from heme and hemoglobin by a Serratia marcescens extracellular protein. Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):9876–9880. doi: 10.1073/pnas.91.21.9876. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mickelsen P. A., Sparling P. F. Ability of Neisseria gonorrhoeae, Neisseria meningitidis, and commensal Neisseria species to obtain iron from transferrin and iron compounds. Infect Immun. 1981 Aug;33(2):555–564. doi: 10.1128/iai.33.2.555-564.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Morton D. J., Musser J. M., Stull T. L. Expression of the Haemophilus influenzae transferrin receptor is repressible by hemin but not elemental iron alone. Infect Immun. 1993 Oct;61(10):4033–4037. doi: 10.1128/iai.61.10.4033-4037.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Neilands J. B. Microbial iron compounds. Annu Rev Biochem. 1981;50:715–731. doi: 10.1146/annurev.bi.50.070181.003435. [DOI] [PubMed] [Google Scholar]
  29. Otto B. R., Verweij-van Vught A. M., MacLaren D. M. Transferrins and heme-compounds as iron sources for pathogenic bacteria. Crit Rev Microbiol. 1992;18(3):217–233. doi: 10.3109/10408419209114559. [DOI] [PubMed] [Google Scholar]
  30. Perry R. D. Acquisition and storage of inorganic iron and hemin by the yersiniae. Trends Microbiol. 1993 Jul;1(4):142–147. doi: 10.1016/0966-842x(93)90129-f. [DOI] [PubMed] [Google Scholar]
  31. Pettersson A., Klarenbeek V., van Deurzen J., Poolman J. T., Tommassen J. Molecular characterization of the structural gene for the lactoferrin receptor of the meningococcal strain H44/76. Microb Pathog. 1994 Dec;17(6):395–408. doi: 10.1006/mpat.1994.1085. [DOI] [PubMed] [Google Scholar]
  32. Pettersson A., van der Ley P., Poolman J. T., Tommassen J. Molecular characterization of the 98-kilodalton iron-regulated outer membrane protein of Neisseria meningitidis. Infect Immun. 1993 Nov;61(11):4724–4733. doi: 10.1128/iai.61.11.4724-4733.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Postle K. TonB protein and energy transduction between membranes. J Bioenerg Biomembr. 1993 Dec;25(6):591–601. doi: 10.1007/BF00770246. [DOI] [PubMed] [Google Scholar]
  34. Reidl J., Mekalanos J. J. Lipoprotein e(P4) is essential for hemin uptake by Haemophilus influenzae. J Exp Med. 1996 Feb 1;183(2):621–629. doi: 10.1084/jem.183.2.621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Schryvers A. B., Gonzalez G. C. Receptors for transferrin in pathogenic bacteria are specific for the host's protein. Can J Microbiol. 1990 Feb;36(2):145–147. doi: 10.1139/m90-026. [DOI] [PubMed] [Google Scholar]
  36. Sparling P. F., Elkins C., Wyrick P. B., Cohen M. S. Vaccines for bacterial sexually transmitted infections: a realistic goal? Proc Natl Acad Sci U S A. 1994 Mar 29;91(7):2456–2463. doi: 10.1073/pnas.91.7.2456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Stojiljkovic I., Bäumler A. J., Hantke K. Fur regulon in gram-negative bacteria. Identification and characterization of new iron-regulated Escherichia coli genes by a fur titration assay. J Mol Biol. 1994 Feb 18;236(2):531–545. doi: 10.1006/jmbi.1994.1163. [DOI] [PubMed] [Google Scholar]
  38. Stojiljkovic I., Hantke K. Hemin uptake system of Yersinia enterocolitica: similarities with other TonB-dependent systems in gram-negative bacteria. EMBO J. 1992 Dec;11(12):4359–4367. doi: 10.1002/j.1460-2075.1992.tb05535.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Stojiljkovic I., Hantke K. Transport of haemin across the cytoplasmic membrane through a haemin-specific periplasmic binding-protein-dependent transport system in Yersinia enterocolitica. Mol Microbiol. 1994 Aug;13(4):719–732. doi: 10.1111/j.1365-2958.1994.tb00465.x. [DOI] [PubMed] [Google Scholar]
  40. Stojiljkovic I., Hwa V., de Saint Martin L., O'Gaora P., Nassif X., Heffron F., So M. The Neisseria meningitidis haemoglobin receptor: its role in iron utilization and virulence. Mol Microbiol. 1995 Feb;15(3):531–541. doi: 10.1111/j.1365-2958.1995.tb02266.x. [DOI] [PubMed] [Google Scholar]
  41. Stugard C. E., Daskaleros P. A., Payne S. M. A 101-kilodalton heme-binding protein associated with congo red binding and virulence of Shigella flexneri and enteroinvasive Escherichia coli strains. Infect Immun. 1989 Nov;57(11):3534–3539. doi: 10.1128/iai.57.11.3534-3539.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Stull T. L. Protein sources of heme for Haemophilus influenzae. Infect Immun. 1987 Jan;55(1):148–153. doi: 10.1128/iai.55.1.148-153.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Weinberg E. D. Iron withholding: a defense against infection and neoplasia. Physiol Rev. 1984 Jan;64(1):65–102. doi: 10.1152/physrev.1984.64.1.65. [DOI] [PubMed] [Google Scholar]
  44. Wong J. C., Holland J., Parsons T., Smith A., Williams P. Identification and characterization of an iron-regulated hemopexin receptor in Haemophilus influenzae type b. Infect Immun. 1994 Jan;62(1):48–59. doi: 10.1128/iai.62.1.48-59.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Yamamoto S., Hara Y., Tomochika K., Shinoda S. Utilization of hemin and hemoglobin as iron sources by Vibrio parahaemolyticus and identification of an iron-repressible hemin-binding protein. FEMS Microbiol Lett. 1995 May 1;128(2):195–200. doi: 10.1111/j.1574-6968.1995.tb07522.x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES