Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Aug;178(15):4696–4703. doi: 10.1128/jb.178.15.4696-4703.1996

Peptidoglycan synthesis and structure in Staphylococcus haemolyticus expressing increasing levels of resistance to glycopeptide antibiotics.

D Billot-Klein 1, L Gutmann 1, D Bryant 1, D Bell 1, J Van Heijenoort 1, J Grewal 1, D M Shlaes 1
PMCID: PMC178241  PMID: 8755902

Abstract

The structures of cytoplasmic peptidoglycan precursor and mature peptidoglycan of an isogenic series of Staphylococcus haemolyticus strains expressing increasing levels of resistance to the glycopeptide antibiotics teicoplanin and vancomycin (MICs, 8 to 32 and 4 to 16 microg/ml, respectively) were determined. High-performance liquid chromatography, mass spectrometry, amino acid analysis, digestion by R39 D,D-carboxypeptidase, and N-terminal amino acid sequencing were utilized. UDP-muramyl-tetrapeptide-D-lactate constituted 1.7% of total cytoplasmic peptidoglycan precursors in the most resistant strain. It is not clear if this amount of depsipeptide precursor can account for the levels of resistance achieved by this strain. Detailed structural analysis of mature peptidoglycan, examined for the first time for this species, revealed that the peptidoglycan of these strains, like that of other staphylococci, is highly cross-linked and is composed of a lysine muropeptide acceptor containing a substitution at its epsilon-amino position of a glycine-containing cross bridge to the D-Ala 4 of the donor, with disaccharide-pentapeptide frequently serving as an acceptor for transpeptidation. The predominant cross bridges were found to be COOH-Gly-Gly-Ser-Gly-Gly-NH2 and COOH-Ala-Gly-Ser-Gly-Gly-NH2. Liquid chromatography-mass spectrometry analysis of the peptidoglycan of resistant strains revealed polymeric muropeptides bearing cross bridges containing an additional serine in place of glycine (probable structures, COOH-Gly-Ser-Ser-Gly-Gly-NH2 and COOH-Ala-Gly-Ser-Ser-Gly-NH2). Muropeptides bearing an additional serine in their cross bridges are estimated to account for 13.6% of peptidoglycan analyzed from resistant strains of S. haemolyticus. A soluble glycopeptide target (L-Ala-gamma-D-iso-glutamyl-L-Lys-D-Ala-D-Ala) was able to more effectively compete for vancomycin when assayed in the presence of resistant cells than when assayed in the presence of susceptible cells, suggesting that some of the resistance was directed towards the cooperativity of glycopeptide binding to its target. These results are consistent with a hypothesis that alterations at the level of the cross bridge might interfere with the binding of glycopeptide dimers and therefore with the cooperative binding of the antibiotic to its target in situ. Glycopeptide resistance in S. haemolyticus may be multifactorial.

Full Text

The Full Text of this article is available as a PDF (253.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arthur M., Depardieu F., Molinas C., Reynolds P., Courvalin P. The vanZ gene of Tn1546 from Enterococcus faecium BM4147 confers resistance to teicoplanin. Gene. 1995 Feb 27;154(1):87–92. doi: 10.1016/0378-1119(94)00851-i. [DOI] [PubMed] [Google Scholar]
  2. Arthur M., Molinas C., Depardieu F., Courvalin P. Characterization of Tn1546, a Tn3-related transposon conferring glycopeptide resistance by synthesis of depsipeptide peptidoglycan precursors in Enterococcus faecium BM4147. J Bacteriol. 1993 Jan;175(1):117–127. doi: 10.1128/jb.175.1.117-127.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beauregard D. A., Williams D. H., Gwynn M. N., Knowles D. J. Dimerization and membrane anchors in extracellular targeting of vancomycin group antibiotics. Antimicrob Agents Chemother. 1995 Mar;39(3):781–785. doi: 10.1128/AAC.39.3.781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Billot-Klein D., Gutmann L., Sablé S., Guittet E., van Heijenoort J. Modification of peptidoglycan precursors is a common feature of the low-level vancomycin-resistant VANB-type Enterococcus D366 and of the naturally glycopeptide-resistant species Lactobacillus casei, Pediococcus pentosaceus, Leuconostoc mesenteroides, and Enterococcus gallinarum. J Bacteriol. 1994 Apr;176(8):2398–2405. doi: 10.1128/jb.176.8.2398-2405.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bugg T. D., Wright G. D., Dutka-Malen S., Arthur M., Courvalin P., Walsh C. T. Molecular basis for vancomycin resistance in Enterococcus faecium BM4147: biosynthesis of a depsipeptide peptidoglycan precursor by vancomycin resistance proteins VanH and VanA. Biochemistry. 1991 Oct 29;30(43):10408–10415. doi: 10.1021/bi00107a007. [DOI] [PubMed] [Google Scholar]
  6. Daum R. S., Gupta S., Sabbagh R., Milewski W. M. Characterization of Staphylococcus aureus isolates with decreased susceptibility to vancomycin and teicoplanin: isolation and purification of a constitutively produced protein associated with decreased susceptibility. J Infect Dis. 1992 Nov;166(5):1066–1072. doi: 10.1093/infdis/166.5.1066. [DOI] [PubMed] [Google Scholar]
  7. Glauner B. Separation and quantification of muropeptides with high-performance liquid chromatography. Anal Biochem. 1988 Aug 1;172(2):451–464. doi: 10.1016/0003-2697(88)90468-x. [DOI] [PubMed] [Google Scholar]
  8. Greenwood D. Microbiological properties of teicoplanin. J Antimicrob Chemother. 1988 Jan;21 (Suppl A):1–13. doi: 10.1093/jac/21.suppl_a.1. [DOI] [PubMed] [Google Scholar]
  9. Handwerger S. Alterations in peptidoglycan precursors and vancomycin susceptibility in Tn917 insertion mutants of Enterococcus faecalis 221. Antimicrob Agents Chemother. 1994 Mar;38(3):473–475. doi: 10.1128/aac.38.3.473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Herwaldt L., Boyken L., Pfaller M. In vitro selection of resistance to vancomycin in bloodstream isolates of Staphylococcus haemolyticus and Staphylococcus epidermidis. Eur J Clin Microbiol Infect Dis. 1991 Dec;10(12):1007–1012. doi: 10.1007/BF01984921. [DOI] [PubMed] [Google Scholar]
  11. Kaatz G. W., Seo S. M., Dorman N. J., Lerner S. A. Emergence of teicoplanin resistance during therapy of Staphylococcus aureus endocarditis. J Infect Dis. 1990 Jul;162(1):103–108. doi: 10.1093/infdis/162.1.103. [DOI] [PubMed] [Google Scholar]
  12. Maidhof H., Reinicke B., Blümel P., Berger-Bächi B., Labischinski H. femA, which encodes a factor essential for expression of methicillin resistance, affects glycine content of peptidoglycan in methicillin-resistant and methicillin-susceptible Staphylococcus aureus strains. J Bacteriol. 1991 Jun;173(11):3507–3513. doi: 10.1128/jb.173.11.3507-3513.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Mainardi J. L., Shlaes D. M., Goering R. V., Shlaes J. H., Acar J. F., Goldstein F. W. Decreased teicoplanin susceptibility of methicillin-resistant strains of Staphylococcus aureus. J Infect Dis. 1995 Jun;171(6):1646–1650. doi: 10.1093/infdis/171.6.1646. [DOI] [PubMed] [Google Scholar]
  14. Milewski W. M., Boyle-Vavra S., Moreira B., Ebert C. C., Daum R. S. Overproduction of a 37-kilodalton cytoplasmic protein homologous to NAD+-linked D-lactate dehydrogenase associated with vancomycin resistance in Staphylococcus aureus. Antimicrob Agents Chemother. 1996 Jan;40(1):166–172. doi: 10.1128/aac.40.1.166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Noble W. C., Virani Z., Cree R. G. Co-transfer of vancomycin and other resistance genes from Enterococcus faecalis NCTC 12201 to Staphylococcus aureus. FEMS Microbiol Lett. 1992 Jun 1;72(2):195–198. doi: 10.1016/0378-1097(92)90528-v. [DOI] [PubMed] [Google Scholar]
  16. O'Hare M. D., Reynolds P. E. Novel membrane proteins present in teicoplanin-resistant, vancomycin-sensitive, coagulase-negative Staphylococcus spp. J Antimicrob Chemother. 1992 Dec;30(6):753–768. doi: 10.1093/jac/30.6.753. [DOI] [PubMed] [Google Scholar]
  17. Recsei P. A., Gruss A. D., Novick R. P. Cloning, sequence, and expression of the lysostaphin gene from Staphylococcus simulans. Proc Natl Acad Sci U S A. 1987 Mar;84(5):1127–1131. doi: 10.1073/pnas.84.5.1127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Schleifer K. H., Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev. 1972 Dec;36(4):407–477. doi: 10.1128/br.36.4.407-477.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Schwalbe R. S., Stapleton J. T., Gilligan P. H. Emergence of vancomycin resistance in coagulase-negative staphylococci. N Engl J Med. 1987 Apr 9;316(15):927–931. doi: 10.1056/NEJM198704093161507. [DOI] [PubMed] [Google Scholar]
  20. Shlaes D. M., Shlaes J. H. Teicoplanin selects for Staphylococcus aureus that is resistant to vancomycin. Clin Infect Dis. 1995 Apr;20(4):1071–1073. doi: 10.1093/clinids/20.4.1071. [DOI] [PubMed] [Google Scholar]
  21. Shlaes D. M., Shlaes J. H., Vincent S., Etter L., Fey P. D., Goering R. V. Teicoplanin-resistant Staphylococcus aureus expresses a novel membrane protein and increases expression of penicillin-binding protein 2 complex. Antimicrob Agents Chemother. 1993 Nov;37(11):2432–2437. doi: 10.1128/aac.37.11.2432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Somner E. A., Reynolds P. E. Inhibition of peptidoglycan biosynthesis by ramoplanin. Antimicrob Agents Chemother. 1990 Mar;34(3):413–419. doi: 10.1128/aac.34.3.413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sugai M., Komatsuzawa H., Akiyama T., Hong Y. M., Oshida T., Miyake Y., Yamaguchi T., Suginaka H. Identification of endo-beta-N-acetylglucosaminidase and N-acetylmuramyl-L-alanine amidase as cluster-dispersing enzymes in Staphylococcus aureus. J Bacteriol. 1995 Mar;177(6):1491–1496. doi: 10.1128/jb.177.6.1491-1496.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. de Jonge B. L., Chang Y. S., Gage D., Tomasz A. Peptidoglycan composition of a highly methicillin-resistant Staphylococcus aureus strain. The role of penicillin binding protein 2A. J Biol Chem. 1992 Jun 5;267(16):11248–11254. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES