Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Aug;178(15):4704–4709. doi: 10.1128/jb.178.15.4704-4709.1996

Regulated expression of a repressor protein: FadR activates iclR.

L Gui 1, A Sunnarborg 1, D C LaPorte 1
PMCID: PMC178242  PMID: 8755903

Abstract

The control of the glyoxylate bypass operon (aceBAK) of Escherichia coli is mediated by two regulatory proteins, IclMR and FadR. IclMR is a repressor protein which has previously been shown to bind to a site which overlaps the aceBAK promoter. FAR is a repressor/activator protein which participates in control of the genes of fatty acid metabolism. A sequence just upstream of the iclR promoter bears a striking resemblance to FadR binding sites found in the fatty acid metabolic genes. The in vitro binding specificity of FadR, determined by oligonucleotide selection, was in good agreement with the sequences of these sites. The ability of FadR to bind to the site associated with iclR was demonstrated by gel shift and DNase I footprint analyses. Disruption of FadR or inactivation of the FadR binding site of iclR decreased the expression of an iclR::lacZ operon fusion, indicating that FadR activates the expression of iclR. It has been reported that disruption of fadR increases the expression of aceBAK. We observed a similar increase when we inactivated the FadR binding site of an iclR+ allele. This result suggests that FadR regulates aceBAK indirectly by altering the expression of IclR.

Full Text

The Full Text of this article is available as a PDF (295.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Borthwick A. C., Holms W. H., Nimmo H. G. The phosphorylation of Escherichia coli isocitrate dehydrogenase in intact cells. Biochem J. 1984 Sep 15;222(3):797–804. doi: 10.1042/bj2220797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chung T., Klumpp D. J., LaPorte D. C. Glyoxylate bypass operon of Escherichia coli: cloning and determination of the functional map. J Bacteriol. 1988 Jan;170(1):386–392. doi: 10.1128/jb.170.1.386-392.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chung T., Resnik E., Stueland C., LaPorte D. C. Relative expression of the products of glyoxylate bypass operon: contributions of transcription and translation. J Bacteriol. 1993 Jul;175(14):4572–4575. doi: 10.1128/jb.175.14.4572-4575.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Collado-Vides J., Magasanik B., Gralla J. D. Control site location and transcriptional regulation in Escherichia coli. Microbiol Rev. 1991 Sep;55(3):371–394. doi: 10.1128/mr.55.3.371-394.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. DiRusso C. C., Heimert T. L., Metzger A. K. Characterization of FadR, a global transcriptional regulator of fatty acid metabolism in Escherichia coli. Interaction with the fadB promoter is prevented by long chain fatty acyl coenzyme A. J Biol Chem. 1992 Apr 25;267(12):8685–8691. [PubMed] [Google Scholar]
  6. DiRusso C. C. Nucleotide sequence of the fadR gene, a multifunctional regulator of fatty acid metabolism in Escherichia coli. Nucleic Acids Res. 1988 Aug 25;16(16):7995–8009. doi: 10.1093/nar/16.16.7995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Garnak M., Reeves H. C. Phosphorylation of Isocitrate dehydrogenase of Escherichia coli. Science. 1979 Mar 16;203(4385):1111–1112. doi: 10.1126/science.34215. [DOI] [PubMed] [Google Scholar]
  8. Gui L., Sunnarborg A., Pan B., LaPorte D. C. Autoregulation of iclR, the gene encoding the repressor of the glyoxylate bypass operon. J Bacteriol. 1996 Jan;178(1):321–324. doi: 10.1128/jb.178.1.321-324.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Henry M. F., Cronan J. E., Jr A new mechanism of transcriptional regulation: release of an activator triggered by small molecule binding. Cell. 1992 Aug 21;70(4):671–679. doi: 10.1016/0092-8674(92)90435-f. [DOI] [PubMed] [Google Scholar]
  10. Henry M. F., Cronan J. E., Jr Escherichia coli transcription factor that both activates fatty acid synthesis and represses fatty acid degradation. J Mol Biol. 1991 Dec 20;222(4):843–849. doi: 10.1016/0022-2836(91)90574-p. [DOI] [PubMed] [Google Scholar]
  11. KORNBERG H. L., MADSEN N. B. Synthesis of C4-dicarboxylic acids from acetate by a glyoxylate bypass of the tricarboxylic acid cycle. Biochim Biophys Acta. 1957 Jun;24(3):651–653. doi: 10.1016/0006-3002(57)90268-8. [DOI] [PubMed] [Google Scholar]
  12. Kohara Y., Akiyama K., Isono K. The physical map of the whole E. coli chromosome: application of a new strategy for rapid analysis and sorting of a large genomic library. Cell. 1987 Jul 31;50(3):495–508. doi: 10.1016/0092-8674(87)90503-4. [DOI] [PubMed] [Google Scholar]
  13. Kornberg H. L. The regulation of anaplerotic enzymes in E. coli. Bull Soc Chim Biol (Paris) 1967 Dec 18;49(11):1479–1490. [PubMed] [Google Scholar]
  14. Kornberg H. L. The role and control of the glyoxylate cycle in Escherichia coli. Biochem J. 1966 Apr;99(1):1–11. doi: 10.1042/bj0990001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. LaPorte D. C., Thorsness P. E., Koshland D. E., Jr Compensatory phosphorylation of isocitrate dehydrogenase. A mechanism for adaptation to the intracellular environment. J Biol Chem. 1985 Sep 5;260(19):10563–10568. [PubMed] [Google Scholar]
  16. LaPorte D. C., Walsh K., Koshland D. E., Jr The branch point effect. Ultrasensitivity and subsensitivity to metabolic control. J Biol Chem. 1984 Nov 25;259(22):14068–14075. [PubMed] [Google Scholar]
  17. Laporte D. C., Stueland C. S., Ikeda T. P. Isocitrate dehydrogenase kinase/phosphatase. Biochimie. 1989 Sep-Oct;71(9-10):1051–1057. doi: 10.1016/0300-9084(89)90110-7. [DOI] [PubMed] [Google Scholar]
  18. Maloy S. R., Bohlander M., Nunn W. D. Elevated levels of glyoxylate shunt enzymes in Escherichia coli strains constitutive for fatty acid degradation. J Bacteriol. 1980 Aug;143(2):720–725. doi: 10.1128/jb.143.2.720-725.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Maloy S. R., Nunn W. D. Genetic regulation of the glyoxylate shunt in Escherichia coli K-12. J Bacteriol. 1982 Jan;149(1):173–180. doi: 10.1128/jb.149.1.173-180.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Maxam A. M., Gilbert W. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 1980;65(1):499–560. doi: 10.1016/s0076-6879(80)65059-9. [DOI] [PubMed] [Google Scholar]
  21. Mead D. A., Szczesna-Skorupa E., Kemper B. Single-stranded DNA 'blue' T7 promoter plasmids: a versatile tandem promoter system for cloning and protein engineering. Protein Eng. 1986 Oct-Nov;1(1):67–74. doi: 10.1093/protein/1.1.67. [DOI] [PubMed] [Google Scholar]
  22. Neidhardt F. C., Bloch P. L., Smith D. F. Culture medium for enterobacteria. J Bacteriol. 1974 Sep;119(3):736–747. doi: 10.1128/jb.119.3.736-747.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Nunn W. D. A molecular view of fatty acid catabolism in Escherichia coli. Microbiol Rev. 1986 Jun;50(2):179–192. doi: 10.1128/mr.50.2.179-192.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Nègre D., Cortay J. C., Galinier A., Sauve P., Cozzone A. J. Specific interactions between the IclR repressor of the acetate operon of Escherichia coli and its operator. J Mol Biol. 1992 Nov 5;228(1):23–29. doi: 10.1016/0022-2836(92)90488-6. [DOI] [PubMed] [Google Scholar]
  25. Pan B., Unnikrishnan I., LaPorte D. C. The binding site of the IclR repressor protein overlaps the promoter of aceBAK. J Bacteriol. 1996 Jul;178(13):3982–3984. doi: 10.1128/jb.178.13.3982-3984.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Pollock R., Treisman R. A sensitive method for the determination of protein-DNA binding specificities. Nucleic Acids Res. 1990 Nov 11;18(21):6197–6204. doi: 10.1093/nar/18.21.6197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Resnik E., LaPorte D. C. Introduction of single-copy sequences into the chromosome of Escherichia coli: application to gene and operon fusions. Gene. 1991 Oct 30;107(1):19–25. doi: 10.1016/0378-1119(91)90292-j. [DOI] [PubMed] [Google Scholar]
  28. Resnik E., Pan B., Ramani N., Freundlich M., LaPorte D. C. Integration host factor amplifies the induction of the aceBAK operon of Escherichia coli by relieving IclR repression. J Bacteriol. 1996 May;178(9):2715–2717. doi: 10.1128/jb.178.9.2715-2717.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sanger F., Coulson A. R. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol. 1975 May 25;94(3):441–448. doi: 10.1016/0022-2836(75)90213-2. [DOI] [PubMed] [Google Scholar]
  30. Shih H. M., Towle H. C. Definition of the carbohydrate response element of the rat S14 gene. Evidence for a common factor required for carbohydrate regulation of hepatic genes. J Biol Chem. 1992 Jul 5;267(19):13222–13228. [PubMed] [Google Scholar]
  31. Sunnarborg A., Klumpp D., Chung T., LaPorte D. C. Regulation of the glyoxylate bypass operon: cloning and characterization of iclR. J Bacteriol. 1990 May;172(5):2642–2649. doi: 10.1128/jb.172.5.2642-2649.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES